M(8,5,5)
M(8,5,5) - [math]B_0(kSL_2(8))[/math]
Representative: | [math]B_0(kSL_2(8))[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]C_7[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccccc} 8 & 4 & 4 & 4 & 2 & 2 & 2 \\ 4 & 4 & 2 & 2 & 0 & 2 & 1 \\ 4 & 2 & 4 & 2 & 1 & 0 & 2 \\ 4 & 2 & 2 & 4 & 2 & 1 & 0 \\ 2 & 0 & 1 & 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 1 & 0 & 2 & 0 \\ 2 & 1 & 2 & 0 & 0 & 0 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}SL_2(8))[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ \end{array}\right)[/math][1] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]C_3[/math]; |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,5,4) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes[2] |
[math]p'[/math]-index covering blocks: | M(8,5,8) |
[math]p'[/math]-index covered blocks: | Potentially M(8,5,8) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
The projective indecomposable modules of the [math]2[/math]-blocks of the groups [math]SL_2(2^n)[/math] were computed by Alperin in [Al79] and the quiver and relations by Koshita in [Ko94]. A splendid derived equivalence with M(8,5,4) was constructed by Rouquier in [Ro95].
Contents
Basic algebra
Quiver: a<1,2>, b:<2,3>, c:<3,2>, d:<2,1>, e:<1,4>, f:<4,5>, g:<5,4>, h:<4,1>, i:<1,6>, j:<6,7>, k:<7,6>, l:<6,1>
Relations w.r.t. [math]k[/math]: [math]da=he=li=0[/math], [math]cb=gf=kj=0[/math], [math]bcd=dil[/math], [math]fgh=had[/math], [math]jkl=leh[/math], [math]abc=ila[/math], [math]efg=ade[/math], [math]ijk=ehi[/math], [math]cdi=gha=kle[/math], [math]lab=def=hij[/math]
Other notatable representatives
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Notes
- ↑ Decomposition matrix taken from [1]
- ↑ A splendid Rickard equivalence is given in [Ro95, 2.3], which then lifts to [math]\mathcal{O}[/math]