C5
Blocks with defect group [math]C_5[/math]
These are blocks with cyclic defect groups and so they are described by Brauer trees.
There are six [math]\mathcal{O}[/math]-Morita equivalence classes, accounting for all the possible Brauer trees.
Class | Representative | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|
M(5,1,1) | [math]kC_5[/math] | 5 | 1 | [math]1[/math] | [math]C_5:C_4[/math] | 1 | 1 | ||
M(5,1,2) | [math]kD_{10}[/math] | 4 | 2 | [math]C_2[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | ||
M(5,1,3) | [math]B_0(kA_5)[/math] | 4 | 2 | [math]C_2[/math] | [math]C_2[/math] | 1 | 1 | ||
M(5,1,4) | [math]k(C_5:C_4)[/math] | 5 | 4 | [math]C_4[/math] | [math]C_4[/math] | 1 | 1 | ||
M(5,1,5) | [math]B_0(kA_7)[/math] | 5 | 4 | [math]C_4[/math] | [math]C_2[/math] | 1 | 1 | ||
M(5,1,6) | faithful block of [math]k(2.A_7)[/math] | 5 | 4 | [math]C_4[/math] | [math]1[/math] | 1 | 1 |