M(5,1,4)
M(5,1,4) - [math]k(C_5:C_4)[/math]
| Representative: | [math]k(C_5:C_4)[/math] | 
|---|---|
| Defect groups: | [math]C_5[/math] | 
| Inertial quotients: | [math]C_4[/math] | 
| [math]k(B)=[/math] | 5 | 
| [math]l(B)=[/math] | 4 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{cccc} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ \end{array} \right)[/math] | 
| Defect group Morita invariant? | Yes | 
| Inertial quotient Morita invariant? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes known? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}(C_5:C_4)[/math] | 
| Decomposition matrices: | [math]\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ \end{array}\right)[/math] | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 | 
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
| [math]PI(B)=[/math] | {{{PIgroup}}} | 
| Source algebras known? | Yes | 
| Source algebra reps: | |
| [math]k[/math]-derived equiv. classes known? | Yes | 
| [math]k[/math]-derived equivalent to: | M(5,1,5), M(5,1,6) | 
| [math]\mathcal{O}[/math]-derived equiv. classes known? | Yes | 
| [math]p'[/math]-index covering blocks: | {{{coveringblocks}}} | 
| [math]p'[/math]-index covered blocks: | {{{coveredblocks}}} | 
| Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} | 
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,4>, d:<4,1>
Relations w.r.t. [math]k[/math]: abcda=bcdab=cdabc=dabcd=0
Other notatable representatives
Covering blocks and covered blocks
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_1 \\ \end{array}, & \begin{array}{c} S_2 \\ S_3 \\ S_4 \\ S_1 \\ S_2 \\ \end{array}, & \begin{array}{c} S_3 \\ S_4 \\ S_1 \\ S_2 \\ S_3 \\ \end{array}, & \begin{array}{c} S_4 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.