M(8,5,5)

From Block library
Revision as of 20:18, 23 September 2018 by Charles Eaton (talk | contribs) (Created page with "{{blockbox |title = M(8,5,5) - <math>B_0(kSL_2(8))</math> |image = M(8,5,5)quiver.png |representative = <math>B_0(kSL_2(8))</math> |defect = C2xC2xC2|<math>C_2 \times C_2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
M(8,5,5) - [math]B_0(kSL_2(8))[/math]
M(8,5,5)quiver.png
Representative: [math]B_0(kSL_2(8))[/math]
Defect groups: [math]C_2 \times C_2 \times C_2[/math]
Inertial quotients: [math]C_7[/math]
[math]k(B)=[/math] 8
[math]l(B)=[/math] 7
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccccccc} 8 & 4 & 4 & 4 & 2 & 2 & 2 \\ 4 & 4 & 2 & 2 & 0 & 2 & 1 \\ 4 & 2 & 4 & 2 & 1 & 0 & 2 \\ 4 & 2 & 2 & 4 & 2 & 1 & 0 \\ 2 & 0 & 1 & 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 1 & 0 & 2 & 0 \\ 2 & 1 & 2 & 0 & 0 & 0 & 2 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}SL_2(8))[/math]
Decomposition matrices: [math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]C_3[/math];
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:  
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,5,4)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

Basic algebra

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_2 \times C_2 \times C_2[/math]