M(5,1,5)
Revision as of 09:05, 4 September 2018 by Charles Eaton (talk | contribs) (Created page with "{{blockbox |title = M(5,1,5) - <math>B_0(kA_7)</math> |image = M(5,1,5)tree.png |representative = <math>B_0(kA_7)</math> |defect = <math>C_5</math> |inertialquotients...")
M(5,1,5) - [math]B_0(kA_7)[/math]
Representative: | [math]B_0(kA_7)[/math] |
---|---|
Defect groups: | [math]C_5[/math] |
Inertial quotients: | [math]C_4[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 4 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}A_7)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(5,1,4), M(5,1,6) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | {{{coveringblocks}}} |
[math]p'[/math]-index covered blocks: | {{{coveredblocks}}} |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,4>, d:<4,3>, e:<3,2>, f:<2,1>
Relations w.r.t. [math]k[/math]: ab=bc=de=ef=0, fa=be, eb=cd
Other notatable representatives
Covering blocks and covered blocks
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{ccc} & S_2 & \\ S_1 & & S_3 \\ & S_2 & \\ \end{array}, & \begin{array}{ccc} & S_3 & \\ S_2 & & S_4 \\ & S_3 & \\ \end{array}, & \begin{array}{c} S_4 \\ S_3 \\ S_4 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.