M(3,1,1)

From Block library
Revision as of 14:01, 31 August 2018 by Charles Eaton (talk | contribs) (Image added)
Jump to: navigation, search


M(3,1,1) - [math]kC_3[/math]
M(3,1,1)tree.png
Representative: [math]kC_3[/math]
Defect groups: [math]C_3[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 3
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_3[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=S_3[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_3[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(3,1,2)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: {{{coveringblocks}}}
[math]p'[/math]-index covered blocks: {{{coveredblocks}}}
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a : <1,1>

Relations w.r.t. [math]k[/math]: a^3=0

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] lies in M(3,1,1), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].

If [math]B[/math] lies in M(3,1,1), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.

Back to [math]C_3[/math]