M(3,1,2)
| Representative: | [math]kS_3[/math] | 
|---|---|
| Defect groups: | [math]C_3[/math] | 
| Inertial quotients: | [math]C_2[/math] | 
| [math]k(B)=[/math] | 3 | 
| [math]l(B)=[/math] | 2 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{cc} 2 & 1 \\ 1 & 2 \\ \end{array} \right)[/math] | 
| Defect group Morita invariant? | Yes | 
| Inertial quotient Morita invariant? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes known? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} S_3[/math] | 
| Decomposition matrices: | [math]\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \end{array}\right)[/math] | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 | 
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{T}(B)=C_2[/math] | 
| [math]PI(B)=[/math] | {{{PIgroup}}} | 
| Source algebras known? | Yes | 
| Source algebra reps: | [math]kS_3[/math] | 
| [math]k[/math]-derived equiv. classes known? | Yes | 
| [math]k[/math]-derived equivalent to: | M(3,1,1) | 
| [math]\mathcal{O}[/math]-derived equiv. classes known? | Yes | 
| [math]p'[/math]-index covering blocks: | M(3,1,1) | 
| [math]p'[/math]-index covered blocks: | M(3,1,1) | 
| Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} | 
These are very frequently occuring blocks with cyclic defect groups, so are described in work culminating in [Li96] .
Contents
Basic algebra
Quiver: a: <1,2>, b: <2,1>
Relations w.r.t. [math]k[/math]: aba=bab=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] lies in M(3,1,2), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.
If [math]B[/math] lies in M(3,1,2), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{c} S_2 \\ S_1 \\ S_2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.

