Difference between revisions of "C2xC2xC2"

From Block library
Jump to: navigation, search
(Removed under construction label)
Line 2: Line 2:
  
 
== Blocks with defect group <math>C_2 \times C_2 \times C_2</math> ==
 
== Blocks with defect group <math>C_2 \times C_2 \times C_2</math> ==
 
[[Image:under-construction.png|50px|left]]
 
  
 
These were classified in [[References|[Ea16]]] using the [[Glossary#CFSG|CFSG]]. Each of the eight <math>k</math>-Morita equivalence classes lifts to an unique class over <math>\mathcal{O}</math>.  
 
These were classified in [[References|[Ea16]]] using the [[Glossary#CFSG|CFSG]]. Each of the eight <math>k</math>-Morita equivalence classes lifts to an unique class over <math>\mathcal{O}</math>.  

Revision as of 10:41, 5 October 2018

Blocks with defect group [math]C_2 \times C_2 \times C_2[/math]

These were classified in [Ea16] using the CFSG. Each of the eight [math]k[/math]-Morita equivalence classes lifts to an unique class over [math]\mathcal{O}[/math].

Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(8,5,1) [math]k(C_2 \times C_2 \times C_2)[/math] 1 8 1 [math]1[/math] 1 1
M(8,5,2) [math]B_0(k(A_5 \times C_2))[/math] 1 8 3 [math]C_3[/math] 1 1
M(8,5,3) [math]k(A_4 \times C_2)[/math] 1 8 3 [math]C_3[/math] 1 1
M(8,5,4) [math]k((C_2 \times C_2 \times C_2):C_7)[/math] 1 8 7 [math]C_7[/math] 1 1
M(8,5,5) [math]B_0(kSL_2(8))[/math] 1 8 7 [math]C_7[/math] 1 1
M(8,5,6) [math]k((C_2 \times C_2 \times C_2):(C_7:C_3))[/math] 1 8 5 [math]C_7:C_3[/math] 1 1
M(8,5,7) [math]B_0(kJ_1)[/math] 1 8 5 [math]C_7:C_3[/math] 1 1
M(8,5,8) [math]B_0(k{\rm Aut}(SL_2(8)))[/math] 1 8 5 [math]C_7:C_3[/math] 1 1

M(8,5,2) and M(8,5,3) are derived equivalent over [math]\mathcal{O}[/math].

M(8,5,4) and M(8,5,5) are derived equivalent over [math]\mathcal{O}[/math].

M(8,5,6), M(8,5,7) and M(8,5,8) are derived equivalent over [math]\mathcal{O}[/math].