Difference between revisions of "M(5,1,6)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(5,1,6) - <math>k(2.A_7)</math> |image = M(5,1,6)quiver.png |representative = faithful block of <math>k(2.A_7)</math> |defect = <math>C_5</math>...")
 
(Corrected rep)
 
Line 1: Line 1:
 
{{blockbox
 
{{blockbox
|title = M(5,1,6) - <math>k(2.A_7)</math>  
+
|title = M(5,1,6) - <math>B_{15}(k(6.A_7))</math>  
 
|image = M(5,1,6)quiver.png
 
|image = M(5,1,6)quiver.png
|representative = faithful block of <math>k(2.A_7)</math>
+
|representative = <math>B_{15}(k(6.A_7))</math>
 
|defect = [[C5|<math>C_5</math>]]
 
|defect = [[C5|<math>C_5</math>]]
 
|inertialquotients = <math>C_4</math>
 
|inertialquotients = <math>C_4</math>
Line 18: Line 18:
 
|inertial-morita-inv? = Yes
 
|inertial-morita-inv? = Yes
 
|O-morita? = Yes
 
|O-morita? = Yes
|O-morita = faithful block of <math>\mathcal{O}(2.A_7)</math>
+
|O-morita = <math>B_{15}(\mathcal{O}(6.A_7))</math>
 
|decomp = <math>\left( \begin{array}{cccc}
 
|decomp = <math>\left( \begin{array}{cccc}
 
1 & 0 & 0 & 0 \\
 
1 & 0 & 0 & 0 \\
Line 33: Line 33:
 
|k-derived = [[M(5,1,4)]], [[M(5,1,5)]]
 
|k-derived = [[M(5,1,4)]], [[M(5,1,5)]]
 
|O-derived-known? = Yes
 
|O-derived-known? = Yes
 +
|coveringblocks =
 +
|coveredblocks =
 
}}
 
}}
  
Line 42: Line 44:
  
 
== Other notatable representatives ==
 
== Other notatable representatives ==
 
Block 17 in the labelling used in [http://www.math.rwth-aachen.de/~MOC/decomposition/tex/ON/]
 
 
== Covering blocks and covered blocks ==
 
 
<!-- Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
 
If <math>b</math> lies in M(5,1,3), then <math>B</math> must lie in M(5,1,3) or [[M(5,1,5)]]. <span style="color: red">Examples needed.</span>
 
 
If <math>B</math> lies in M(5,1,3), then <math>b</math> must lie in [[M(5,1,1)]], M(5,1,2) or [[M(5,1,4)]]. <span style="color: red">Examples needed.</span>
 
-->
 
 
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==

Latest revision as of 07:56, 28 September 2018

M(5,1,6) - [math]B_{15}(k(6.A_7))[/math]
M(5,1,6)quiver.png
Representative: [math]B_{15}(k(6.A_7))[/math]
Defect groups: [math]C_5[/math]
Inertial quotients: [math]C_4[/math]
[math]k(B)=[/math] 5
[math]l(B)=[/math] 4
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_{15}(\mathcal{O}(6.A_7))[/math]
Decomposition matrices: [math]\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(5,1,4), M(5,1,5)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,4>, d:<4,2>, e:<2,1>

Relations w.r.t. [math]k[/math]: ea=bcd, ab=de=cdbc=0

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{ccc} & S_2 & \\ S_1 & & \begin{array}{c} S_3 \\ S_4 \\ \end{array} \\ & S_2 & \\ \end{array}, & \begin{array}{c} S_3 \\ S_4 \\ S_2 \\ S_3 \\ \end{array}, & \begin{array}{c} S_4 \\ S_2 \\ S_3 \\ S_4 \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_5[/math]