Difference between revisions of "M(3,1,2)"
Line 2: | Line 2: | ||
{{blockbox | {{blockbox | ||
|title = M(3,1,2) - <math>kS_3</math> | |title = M(3,1,2) - <math>kS_3</math> | ||
− | |image = | + | |image = M(3,1,2)quiver.png |
|representative = <math>kS_3</math> | |representative = <math>kS_3</math> | ||
|defect = [[C3|<math>C_3</math>]] | |defect = [[C3|<math>C_3</math>]] | ||
Line 29: | Line 29: | ||
|k-derived = [[M(3,1,1)]] | |k-derived = [[M(3,1,1)]] | ||
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
− | |Pic-k= | + | |Pic-k = |
+ | |coveringblocks = [[M(3,1,1)]] | ||
+ | |coveredblocks = [[M(3,1,1)]] | ||
}} | }} | ||
Latest revision as of 21:30, 9 September 2018
Representative: | [math]kS_3[/math] |
---|---|
Defect groups: | [math]C_3[/math] |
Inertial quotients: | [math]C_2[/math] |
[math]k(B)=[/math] | 3 |
[math]l(B)=[/math] | 2 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cc} 2 & 1 \\ 1 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} S_3[/math] |
Decomposition matrices: | [math]\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{T}(B)=C_2[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]kS_3[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(3,1,1) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(3,1,1) |
[math]p'[/math]-index covered blocks: | M(3,1,1) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are very frequently occuring blocks with cyclic defect groups, so are described in work culminating in [Li96] .
Contents
Basic algebra
Quiver: a: <1,2>, b: <2,1>
Relations w.r.t. [math]k[/math]: aba=bab=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] lies in M(3,1,2), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.
If [math]B[/math] lies in M(3,1,2), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{c} S_2 \\ S_1 \\ S_2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.