Difference between revisions of "Miscallaneous results"

From Block library
Jump to: navigation, search
Line 32: Line 32:
 
|-
 
|-
 
| 7 || [[M(7,1,1)]] || <math>C_7</math> || <math>kC_7</math> || 7 || 1 ||
 
| 7 || [[M(7,1,1)]] || <math>C_7</math> || <math>kC_7</math> || 7 || 1 ||
 +
|-
 +
| 8 || [[M(8,1,1)]] || <math>C_8</math> || <math>kC_8</math> || 8 || 1 ||
 +
|-
 +
| 8 || [[M(8,2,1)]] || <math>C_4 \times C_2</math> || <math>k(C_4 \times C_2)</math> || 8 || 1 ||
 +
|-
 +
| 8 || [[M(8,3,1)]] || <math>D_8</math> || <math>kD_8</math> || 5 || 1 ||
 +
|-
 +
| 8 || [[M(8,4,1)]] || <math>Q_8</math> || <math>kQ_8</math> || 5 || 1 ||
 +
|-
 +
| 8 || [[M(8,5,1)]] || <math>C_2 \times C_2 \times C_2</math> || <math>k(C_2 \times C_2 \times C_2)</math> || 8 || 1 ||
 +
|-
 +
| 8 || [[M(7,1,3)]] || <math>C_7</math> || <math>B_0(kPSL_2(13))</math> || 5 || 2 ||
 +
|-
 +
| 9 || [[M(9,1,1)]] || <math>C_9</math> || <math>kC_9</math> || 9 || 1 ||
 +
|-
 +
| 9 || [[M(9,1,3)]] || <math>C_9</math> || <math>B_0(kPSL_2(8))</math> || 6 || 2 ||
 +
|-
 +
| 9 || [[M(9,2,1)]] || <math>C_3 \times C_3</math> || <math>k(C_3 \times C_3)</math> || 9 || 1 ||
 +
|-
 +
| 9 || || <math>C_3 \times C_3</math> || ? || 6 || 2 || Unknown
 +
|-
 +
| 10 || [[M(5,1,2)]] || <math>C_5</math> || <math>kD_{10}</math> || 4 || 2 ||
 +
|-
 +
| 10 || [[M(11,1,3)]] || <math>C_{11}</math> || <math>B_0(kPSL_2(32))</math> || 7 || 2 ||
 +
|-
 +
| 11 || [[M(8,3,3)]] || <math>D_8</math> || <math>kS_4</math> || 5 || 2 ||
 +
|-
 +
| 11 || [[M(7,1,6)]] || <math>C_7</math> || <math>B_0(kA_7)</math> || 5 || 3 ||
 +
|-
 +
| 11 || [[M(11,1,1)]] || <math>C_{11}</math> || <math>kC_{11}</math> || 11 || 1 ||
 +
|-
 +
| 11 || [[M(13,1,3)]] || <math>C_{13}</math> || <math>B_0(kPSL_2(25))</math> || 8 || 2 ||
 +
|-
 +
| 12 || [[M(4,2,3)]] || <math>C_2 \times C_2</math> || <math>kA_4</math> || 4 || 3 ||
 
|}
 
|}

Revision as of 17:56, 22 September 2018

This page will contain results which do not fit in elsewhere on this site.

Blocks with basic algebras of dimension at most 12

In [Li18] Markus Linckelmann calculated the [math]k[/math]-algebras of dimension at most twelve which occur as basic algebras of blocks of finite groups, with the exception of one case of dimension 9.

Dimension Class Defect group Representative [math]\dim_k(Z(A))[/math] [math]l(A)[/math] Notes
1 M(1,1,1) [math]1[/math] [math]k1[/math] 1 1 Blocks of defect zero
2 M(2,1,1) [math]C_2[/math] [math]kC_2[/math] 2 1
3 M(3,1,1) [math]C_3[/math] [math]kC_3[/math] 3 1
4 M(4,1,1) [math]C_4[/math] [math]kC_4[/math] 4 1
4 M(4,2,1) [math]C_2 \times C_2[/math] [math]k(C_2 \times C_2)[/math] 4 1
5 M(5,1,1) [math]C_5[/math] [math]kC_5[/math] 5 1
6 M(3,1,2) [math]C_3[/math] [math]kS_3[/math] 3 2
7 M(5,1,3) [math]C_5[/math] [math]B_0(kA_5)[/math] 4 2
7 M(7,1,1) [math]C_7[/math] [math]kC_7[/math] 7 1
8 M(8,1,1) [math]C_8[/math] [math]kC_8[/math] 8 1
8 M(8,2,1) [math]C_4 \times C_2[/math] [math]k(C_4 \times C_2)[/math] 8 1
8 M(8,3,1) [math]D_8[/math] [math]kD_8[/math] 5 1
8 M(8,4,1) [math]Q_8[/math] [math]kQ_8[/math] 5 1
8 M(8,5,1) [math]C_2 \times C_2 \times C_2[/math] [math]k(C_2 \times C_2 \times C_2)[/math] 8 1
8 M(7,1,3) [math]C_7[/math] [math]B_0(kPSL_2(13))[/math] 5 2
9 M(9,1,1) [math]C_9[/math] [math]kC_9[/math] 9 1
9 M(9,1,3) [math]C_9[/math] [math]B_0(kPSL_2(8))[/math] 6 2
9 M(9,2,1) [math]C_3 \times C_3[/math] [math]k(C_3 \times C_3)[/math] 9 1
9 [math]C_3 \times C_3[/math]  ? 6 2 Unknown
10 M(5,1,2) [math]C_5[/math] [math]kD_{10}[/math] 4 2
10 M(11,1,3) [math]C_{11}[/math] [math]B_0(kPSL_2(32))[/math] 7 2
11 M(8,3,3) [math]D_8[/math] [math]kS_4[/math] 5 2
11 M(7,1,6) [math]C_7[/math] [math]B_0(kA_7)[/math] 5 3
11 M(11,1,1) [math]C_{11}[/math] [math]kC_{11}[/math] 11 1
11 M(13,1,3) [math]C_{13}[/math] [math]B_0(kPSL_2(25))[/math] 8 2
12 M(4,2,3) [math]C_2 \times C_2[/math] [math]kA_4[/math] 4 3