Difference between revisions of "M(3,1,2)"
(Created page with "{{blockbox |title = {{subst:PAGENAME}} |image = |representative = <math>kS_3</math> |defect = <math>kC_3</math> |inertialquotients = <math>C_2</math> |k(B) = 3 |l(B) = 2 |k-...") |
|||
Line 1: | Line 1: | ||
+ | |||
{{blockbox | {{blockbox | ||
− | |title = M(3,1,2) | + | |title = M(3,1,2) - <math>kS_3</math> |
|image = | |image = | ||
|representative = <math>kS_3</math> | |representative = <math>kS_3</math> | ||
− | |defect = <math> | + | |defect = [[C3|<math>C_3</math>]] |
|inertialquotients = <math>C_2</math> | |inertialquotients = <math>C_2</math> | ||
|k(B) = 3 | |k(B) = 3 | ||
|l(B) = 2 | |l(B) = 2 | ||
|k-morita-frob = 1 | |k-morita-frob = 1 | ||
+ | |O-morita-frob = 1 | ||
|cartan = <math>\left( \begin{array}{cc} | |cartan = <math>\left( \begin{array}{cc} | ||
2 & 1 \\ | 2 & 1 \\ | ||
1 & 2 \\ | 1 & 2 \\ | ||
\end{array} \right)</math> | \end{array} \right)</math> | ||
+ | |O-morita? = Yes | ||
+ | |O-morita = <math>\mathcal{O} S_3</math> | ||
+ | |source? = Yes | ||
+ | |sourcereps= <math>kS_3</math> | ||
+ | |defect-morita-inv? = Yes | ||
+ | |inertial-morita-inv? = Yes | ||
+ | |decomp = <math>\left( \begin{array}{cc} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | 1 & 1 \\ | ||
+ | \end{array}\right)</math> | ||
+ | |Pic-O = <math>\mathcal{T}(B)=C_2</math> | ||
+ | |k-derived-known? = Yes | ||
+ | |k-derived = [[M(3,1,1)]] | ||
+ | |O-derived-known? = Yes | ||
+ | |Pic-k= | ||
}} | }} | ||
+ | |||
+ | These are very frequently occuring blocks with [[Blocks with cyclic defect groups|cyclic defect groups]], so are described in work culminating in [[References|[Li96] ]]. | ||
+ | |||
+ | == Basic algebra == | ||
+ | |||
+ | '''Quiver:''' a: <1,2>, b: <2,1> | ||
+ | |||
+ | '''Relations w.r.t. <math>k</math>:''' aba=bab=0 | ||
+ | |||
+ | == Other notatable representatives == | ||
+ | |||
+ | == Covering blocks and covered blocks == | ||
+ | |||
+ | Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | ||
+ | |||
+ | If <math>b</math> lies in M(3,1,2), then <math>B</math> must lie in M(3,1,1) or M(3,1,2). <span style="color: red">Example needed.</span> | ||
+ | |||
+ | If <math>B</math> lies in M(3,1,2), then <math>b</math> must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of <math>C_3 \triangleleft S_3</math>. | ||
+ | |||
+ | == Projective indecomposable modules == | ||
+ | |||
+ | Labelling the simple <math>B</math>-modules by <math>S_1, S_2</math>, the projective indecomposable modules have Loewy structure as follows: | ||
+ | |||
+ | <math>\begin{array}{cc} | ||
+ | \begin{array}{c} | ||
+ | S_1 \\ | ||
+ | S_2 \\ | ||
+ | S_1 \\ | ||
+ | \end{array}, & | ||
+ | \begin{array}{c} | ||
+ | S_2 \\ | ||
+ | S_1 \\ | ||
+ | S_2 \\ | ||
+ | \end{array} | ||
+ | \end{array} | ||
+ | </math> | ||
+ | |||
+ | == Irreducible characters == | ||
+ | |||
+ | All irreducible characters have height zero. |
Revision as of 10:23, 30 August 2018
Representative: | [math]kS_3[/math] |
---|---|
Defect groups: | [math]C_3[/math] |
Inertial quotients: | [math]C_2[/math] |
[math]k(B)=[/math] | 3 |
[math]l(B)=[/math] | 2 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cc} 2 & 1 \\ 1 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} S_3[/math] |
Decomposition matrices: | [math]\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{T}(B)=C_2[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]kS_3[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(3,1,1) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | {{{coveringblocks}}} |
[math]p'[/math]-index covered blocks: | {{{coveredblocks}}} |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are very frequently occuring blocks with cyclic defect groups, so are described in work culminating in [Li96] .
Contents
Basic algebra
Quiver: a: <1,2>, b: <2,1>
Relations w.r.t. [math]k[/math]: aba=bab=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] lies in M(3,1,2), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.
If [math]B[/math] lies in M(3,1,2), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{c} S_2 \\ S_1 \\ S_2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.