Difference between revisions of "M(3,1,1)"
(Pic_k) |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | |||
{{blockbox | {{blockbox | ||
− | |title = M(3,1,1) | + | |title = M(3,1,1) - <math>kC_3</math> |
− | |image = | + | |image = M(2,1,1)quiver.png |
|representative = <math>kC_3</math> | |representative = <math>kC_3</math> | ||
|defect = [[C3|<math>C_3</math>]] | |defect = [[C3|<math>C_3</math>]] | ||
Line 13: | Line 15: | ||
\end{array} \right)</math> | \end{array} \right)</math> | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = <math>\mathcal{O} C_3</math> | + | |O-morita = <math>\mathcal{O} C_3</math> |
|source? = Yes | |source? = Yes | ||
|sourcereps= <math>kC_3</math> | |sourcereps= <math>kC_3</math> | ||
Line 24: | Line 26: | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|Pic-O = <math>\mathcal{L}(B)=S_3</math> | |Pic-O = <math>\mathcal{L}(B)=S_3</math> | ||
− | | | + | |k-derived-known? = Yes |
+ | |k-derived = [[M(3,1,2)]] | ||
+ | |O-derived-known? = Yes | ||
+ | |Pic-k=<math>k:k^*</math> | ||
+ | |coveringblocks=[[M(3,1,2)]] | ||
+ | |coveredblocks= | ||
}} | }} | ||
+ | |||
+ | |||
+ | == Basic algebra == | ||
+ | |||
+ | '''Quiver:''' a : <1,1> | ||
+ | |||
+ | '''Relations w.r.t. <math>k</math>:''' a^3=0 | ||
+ | |||
+ | == Other notatable representatives == | ||
+ | |||
+ | == Covering blocks and covered blocks == | ||
+ | |||
+ | Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | ||
+ | |||
+ | If <math>b</math> lies in M(3,1,1), then <math>B</math> must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of <math>C_3 \triangleleft S_3</math>. | ||
+ | |||
+ | If <math>B</math> lies in M(3,1,1), then <math>b</math> must lie in M(3,1,1) or M(3,1,2). <span style="color: red">Example needed.</span> | ||
+ | |||
+ | [[C3|Back to <math>C_3</math>]] | ||
+ | |||
+ | [[Category: Morita equivalence classes|3,1,1]] | ||
+ | [[Category: Blocks with defect group C3]] | ||
+ | [[Category: Blocks with cyclic defect group|3,1]] | ||
+ | [[Category: Nilpotent blocks|3,1,1]] |
Latest revision as of 14:59, 7 October 2018
M(3,1,1) - [math]kC_3[/math]
Representative: | [math]kC_3[/math] |
---|---|
Defect groups: | [math]C_3[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 3 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math]k:k^*[/math] |
Cartan matrix: | [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} C_3[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=S_3[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]kC_3[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(3,1,2) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(3,1,2) |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Basic algebra
Quiver: a : <1,1>
Relations w.r.t. [math]k[/math]: a^3=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] lies in M(3,1,1), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].
If [math]B[/math] lies in M(3,1,1), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.