Difference between revisions of "C5"

From Block library
Jump to: navigation, search
(Corrected rep of M(5,1,6))
 
Line 3: Line 3:
 
== Blocks with defect group <math>C_5</math> ==
 
== Blocks with defect group <math>C_5</math> ==
  
These are blocks with [[cyclic defect groups]] and so they are described by [[Brauer trees]].
+
These are [[blocks with cyclic defect groups]] and so they are described by [[Brauer trees]].
  
 
There are six <math>\mathcal{O}</math>-Morita equivalence classes, accounting for all the possible Brauer trees.
 
There are six <math>\mathcal{O}</math>-Morita equivalence classes, accounting for all the possible Brauer trees.

Latest revision as of 10:28, 22 November 2018

Blocks with defect group [math]C_5[/math]

These are blocks with cyclic defect groups and so they are described by Brauer trees.

There are six [math]\mathcal{O}[/math]-Morita equivalence classes, accounting for all the possible Brauer trees.

Class Representative [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(5,1,1) [math]kC_5[/math] 5 1 [math]1[/math] [math]C_5:C_4[/math] 1 1 M(5,1,1)tree.png
M(5,1,2) [math]kD_{10}[/math] 4 2 [math]C_2[/math] [math]C_2 \times C_2[/math] 1 1 M(5,1,2)tree.png
M(5,1,3) [math]B_0(kA_5)[/math] 4 2 [math]C_2[/math] [math]C_2[/math] 1 1 M(5,1,3)tree.png
M(5,1,4) [math]k(C_5:C_4)[/math] 5 4 [math]C_4[/math] [math]C_4[/math] 1 1 M(5,1,4)tree.png
M(5,1,5) [math]B_0(kA_7)[/math] 5 4 [math]C_4[/math] [math]C_2[/math] 1 1 M(5,1,5)tree.png
M(5,1,6) [math]B_{15}(k(6.A_7))[/math] 5 4 [math]C_4[/math] [math]1[/math] 1 1 M(5,1,6)tree.png