Difference between revisions of "M(8,5,5)"
([Al79] reference) |
(Relations and references) |
||
Line 31: | Line 31: | ||
1 & 0 & 1 & 1 & 1 & 0 & 0 \\ | 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ | ||
1 & 1 & 0 & 1 & 0 & 1 & 0 \\ | 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ | ||
− | \end{array}\right)</math> | + | \end{array}\right)</math><ref>Decomposition matrix taken from [http://www.math.rwth-aachen.de/~MOC/decomposition/]</ref> |
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
|Pic-O = <math>C_3</math>; | |Pic-O = <math>C_3</math>; | ||
Line 38: | Line 38: | ||
|k-derived-known? = Yes | |k-derived-known? = Yes | ||
|k-derived = [[M(8,5,4)]] | |k-derived = [[M(8,5,4)]] | ||
− | |O-derived-known? = Yes | + | |O-derived-known? = Yes<ref>A [[Glossary#Splendid equivalence|splendid]] Rickard equivalence is given in [[References|[Ro95, 2.3]]], which then lifts to <math>\mathcal{O}</math></ref> |
− | |coveringblocks = | + | |coveringblocks = [[M(8,5,8)]] |
− | |coveredblocks = | + | |coveredblocks = Potentially [[M(8,5,8)]] |
}} | }} | ||
− | The projective indecomposable modules of the <math>2</math>-blocks of the groups <math>SL_2(2^n)</math> were computed by Alperin in [[References|[Al79]]]. | + | The projective indecomposable modules of the <math>2</math>-blocks of the groups <math>SL_2(2^n)</math> were computed by Alperin in [[References|[Al79]]] and the quiver and relations by Koshita in [[References|[Ko94]]]. A splendid derived equivalence with [[M(8,5,4)]] was constructed by Rouquier in [[References|[Ro95]]]. |
== Basic algebra == | == Basic algebra == | ||
− | + | '''Quiver:''' a<1,2>, b:<2,3>, c:<3,2>, d:<2,1>, e:<1,4>, f:<4,5>, g:<5,4>, h:<4,1>, i:<1,6>, j:<6,7>, k:<7,6>, l:<6,1> | |
− | |||
− | |||
− | '''Relations w.r.t. <math>k</math>:''' <math> | + | '''Relations w.r.t. <math>k</math>:''' <math>da=he=li=0</math>, |
− | <math> | + | <math>cb=gf=kj=0</math>, |
− | <math> | + | <math>bcd=dil</math>, <math>fgh=had</math>, <math>jkl=leh</math>, |
− | + | <math>abc=ila</math>, <math>efg=ade</math>, <math>ijk=ehi</math>, | |
− | + | <math>cdi=gha=kle</math>, | |
− | + | <math>lab=def=hij</math> | |
− | |||
− | |||
− | <math> | ||
− | <math> | ||
− | <math> | ||
− | <math> | ||
− | <math> | ||
− | <math> | ||
− | |||
− | <math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Other notatable representatives == | == Other notatable representatives == | ||
Line 87: | Line 60: | ||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | Labelling the simple <math>B</math>-modules by <math> | + | <!-- Labelling the simple <math>B</math>-modules by <math>1,2,3,4,5,6,7</math>, the projective indecomposable modules have Loewy structure as follows: |
<math>\begin{array}{ccccccc} | <math>\begin{array}{ccccccc} | ||
\begin{array}{c} | \begin{array}{c} | ||
− | + | 1 \\ | |
− | + | 2 \ 4 \ 6 \\ | |
− | + | 3 \ 1 \ 5 \ 1 \ 7 \ 1 \\ | |
+ | 2 \ 6 \ 4 \ 2 \ 6 \ 4 \\ | ||
+ | \\ | ||
S_1 \\ | S_1 \\ | ||
\end{array}, | \end{array}, | ||
Line 145: | Line 120: | ||
All irreducible characters have height zero. | All irreducible characters have height zero. | ||
+ | |||
+ | == Notes == | ||
+ | <references /> | ||
[[C2xC2xC2|Back to <math>C_2 \times C_2 \times C_2</math>]] | [[C2xC2xC2|Back to <math>C_2 \times C_2 \times C_2</math>]] |
Revision as of 14:22, 12 October 2018
M(8,5,5) - [math]B_0(kSL_2(8))[/math]
Representative: | [math]B_0(kSL_2(8))[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]C_7[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccccc} 8 & 4 & 4 & 4 & 2 & 2 & 2 \\ 4 & 4 & 2 & 2 & 0 & 2 & 1 \\ 4 & 2 & 4 & 2 & 1 & 0 & 2 \\ 4 & 2 & 2 & 4 & 2 & 1 & 0 \\ 2 & 0 & 1 & 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 1 & 0 & 2 & 0 \\ 2 & 1 & 2 & 0 & 0 & 0 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}SL_2(8))[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ \end{array}\right)[/math][1] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]C_3[/math]; |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,5,4) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes[2] |
[math]p'[/math]-index covering blocks: | M(8,5,8) |
[math]p'[/math]-index covered blocks: | Potentially M(8,5,8) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
The projective indecomposable modules of the [math]2[/math]-blocks of the groups [math]SL_2(2^n)[/math] were computed by Alperin in [Al79] and the quiver and relations by Koshita in [Ko94]. A splendid derived equivalence with M(8,5,4) was constructed by Rouquier in [Ro95].
Contents
Basic algebra
Quiver: a<1,2>, b:<2,3>, c:<3,2>, d:<2,1>, e:<1,4>, f:<4,5>, g:<5,4>, h:<4,1>, i:<1,6>, j:<6,7>, k:<7,6>, l:<6,1>
Relations w.r.t. [math]k[/math]: [math]da=he=li=0[/math], [math]cb=gf=kj=0[/math], [math]bcd=dil[/math], [math]fgh=had[/math], [math]jkl=leh[/math], [math]abc=ila[/math], [math]efg=ade[/math], [math]ijk=ehi[/math], [math]cdi=gha=kle[/math], [math]lab=def=hij[/math]
Other notatable representatives
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Notes
- ↑ Decomposition matrix taken from [1]
- ↑ A splendid Rickard equivalence is given in [Ro95, 2.3], which then lifts to [math]\mathcal{O}[/math]