Difference between revisions of "M(3,1,1)"

From Block library
Jump to: navigation, search
(Image added)
(Pic_k)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
{{blockbox
 
{{blockbox
 
|title = M(3,1,1) - <math>kC_3</math>  
 
|title = M(3,1,1) - <math>kC_3</math>  
|image = M(3,1,1)tree.png
+
|image = M(2,1,1)quiver.png
 
|representative = <math>kC_3</math>  
 
|representative = <math>kC_3</math>  
 
|defect = [[C3|<math>C_3</math>]]
 
|defect = [[C3|<math>C_3</math>]]
Line 29: Line 29:
 
|k-derived = [[M(3,1,2)]]
 
|k-derived = [[M(3,1,2)]]
 
|O-derived-known? = Yes
 
|O-derived-known? = Yes
|Pic-k= &nbsp;
+
|Pic-k=<math>k:k^*</math>
 +
|coveringblocks=[[M(3,1,2)]]
 +
|coveredblocks=
 
}}
 
}}
  

Latest revision as of 14:59, 7 October 2018


M(3,1,1) - [math]kC_3[/math]
M(2,1,1)quiver.png
Representative: [math]kC_3[/math]
Defect groups: [math]C_3[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 3
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math] [math]k:k^*[/math]
Cartan matrix: [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_3[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=S_3[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_3[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(3,1,2)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(3,1,2)
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a : <1,1>

Relations w.r.t. [math]k[/math]: a^3=0

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] lies in M(3,1,1), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].

If [math]B[/math] lies in M(3,1,1), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.

Back to [math]C_3[/math]