Difference between revisions of "M(3,1,1)"

From Block library
Jump to: navigation, search
(Pic_k)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
 +
 
{{blockbox
 
{{blockbox
|title = M(3,1,1)
+
|title = M(3,1,1) - <math>kC_3</math>
|image =  
+
|image = M(2,1,1)quiver.png
 
|representative = <math>kC_3</math>  
 
|representative = <math>kC_3</math>  
 
|defect = [[C3|<math>C_3</math>]]
 
|defect = [[C3|<math>C_3</math>]]
Line 8: Line 10:
 
|l(B) = 1
 
|l(B) = 1
 
|k-morita-frob = 1
 
|k-morita-frob = 1
 +
|O-morita-frob = 1
 
|cartan = <math>\left( \begin{array}{c}
 
|cartan = <math>\left( \begin{array}{c}
 
3 \\
 
3 \\
 
\end{array} \right)</math>
 
\end{array} \right)</math>
 +
|O-morita? = Yes
 +
|O-morita = <math>\mathcal{O} C_3</math>
 +
|source? = Yes
 +
|sourcereps= <math>kC_3</math>
 +
|defect-morita-inv? = Yes
 +
|inertial-morita-inv? = Yes
 +
|decomp = <math>\left( \begin{array}{c}
 +
1 \\
 +
1 \\
 +
1 \\
 +
\end{array}\right)</math>
 +
|Pic-O = <math>\mathcal{L}(B)=S_3</math>
 +
|k-derived-known? = Yes
 +
|k-derived = [[M(3,1,2)]]
 +
|O-derived-known? = Yes
 +
|Pic-k=<math>k:k^*</math>
 +
|coveringblocks=[[M(3,1,2)]]
 +
|coveredblocks=
 
}}
 
}}
 +
 +
 +
== Basic algebra ==
 +
 +
'''Quiver:''' a : <1,1>
 +
 +
'''Relations w.r.t. <math>k</math>:''' a^3=0
 +
 +
== Other notatable representatives ==
 +
 +
== Covering blocks and covered blocks ==
 +
 +
Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 +
 +
If <math>b</math> lies in M(3,1,1), then <math>B</math> must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of <math>C_3 \triangleleft S_3</math>.
 +
 +
If <math>B</math> lies in M(3,1,1), then <math>b</math> must lie in M(3,1,1) or M(3,1,2). <span style="color: red">Example needed.</span>
 +
 +
[[C3|Back to <math>C_3</math>]]
 +
 +
[[Category: Morita equivalence classes|3,1,1]]
 +
[[Category: Blocks with defect group C3]]
 +
[[Category: Blocks with cyclic defect group|3,1]]
 +
[[Category: Nilpotent blocks|3,1,1]]

Latest revision as of 14:59, 7 October 2018


M(3,1,1) - [math]kC_3[/math]
M(2,1,1)quiver.png
Representative: [math]kC_3[/math]
Defect groups: [math]C_3[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 3
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math] [math]k:k^*[/math]
Cartan matrix: [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_3[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=S_3[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_3[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(3,1,2)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(3,1,2)
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a : <1,1>

Relations w.r.t. [math]k[/math]: a^3=0

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] lies in M(3,1,1), then [math]B[/math] must lie in M(3,1,1) or M(3,1,2). For example consider the principal blocks of [math]C_3 \triangleleft S_3[/math].

If [math]B[/math] lies in M(3,1,1), then [math]b[/math] must lie in M(3,1,1) or M(3,1,2). Example needed.

Back to [math]C_3[/math]