Difference between revisions of "M(5,1,6)"
(Created page with "{{blockbox |title = M(5,1,6) - <math>k(2.A_7)</math> |image = M(5,1,6)quiver.png |representative = faithful block of <math>k(2.A_7)</math> |defect = <math>C_5</math>...") |
(Corrected rep) |
||
Line 1: | Line 1: | ||
{{blockbox | {{blockbox | ||
− | |title = M(5,1,6) - <math>k( | + | |title = M(5,1,6) - <math>B_{15}(k(6.A_7))</math> |
|image = M(5,1,6)quiver.png | |image = M(5,1,6)quiver.png | ||
− | |representative = | + | |representative = <math>B_{15}(k(6.A_7))</math> |
|defect = [[C5|<math>C_5</math>]] | |defect = [[C5|<math>C_5</math>]] | ||
|inertialquotients = <math>C_4</math> | |inertialquotients = <math>C_4</math> | ||
Line 18: | Line 18: | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = | + | |O-morita = <math>B_{15}(\mathcal{O}(6.A_7))</math> |
|decomp = <math>\left( \begin{array}{cccc} | |decomp = <math>\left( \begin{array}{cccc} | ||
1 & 0 & 0 & 0 \\ | 1 & 0 & 0 & 0 \\ | ||
Line 33: | Line 33: | ||
|k-derived = [[M(5,1,4)]], [[M(5,1,5)]] | |k-derived = [[M(5,1,4)]], [[M(5,1,5)]] | ||
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
+ | |coveringblocks = | ||
+ | |coveredblocks = | ||
}} | }} | ||
Line 42: | Line 44: | ||
== Other notatable representatives == | == Other notatable representatives == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Projective indecomposable modules == | == Projective indecomposable modules == |
Latest revision as of 07:56, 28 September 2018
M(5,1,6) - [math]B_{15}(k(6.A_7))[/math]
Representative: | [math]B_{15}(k(6.A_7))[/math] |
---|---|
Defect groups: | [math]C_5[/math] |
Inertial quotients: | [math]C_4[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 4 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_{15}(\mathcal{O}(6.A_7))[/math] |
Decomposition matrices: | [math]\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(5,1,4), M(5,1,5) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,4>, d:<4,2>, e:<2,1>
Relations w.r.t. [math]k[/math]: ea=bcd, ab=de=cdbc=0
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{ccc} & S_2 & \\ S_1 & & \begin{array}{c} S_3 \\ S_4 \\ \end{array} \\ & S_2 & \\ \end{array}, & \begin{array}{c} S_3 \\ S_4 \\ S_2 \\ S_3 \\ \end{array}, & \begin{array}{c} S_4 \\ S_2 \\ S_3 \\ S_4 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.