Difference between revisions of "C2xC2xC2"

From Block library
Jump to: navigation, search
(Switched M(8,5,2) and M(8,5,3))
(Added lifting column)
Line 9: Line 9:
 
! scope="col"| Class
 
! scope="col"| Class
 
! scope="col"| Representative
 
! scope="col"| Representative
 +
! scope="col"| # lifts / <math>\mathcal{O}</math>
 
! scope="col"| <math>k(B)</math>
 
! scope="col"| <math>k(B)</math>
 
! scope="col"| <math>l(B)</math>
 
! scope="col"| <math>l(B)</math>
Line 19: Line 20:
  
 
|-
 
|-
|[[M(8,5,1)]] || <math>k(C_2 \times C_2 \times C_2)</math> ||8 ||1 ||<math>1</math> || || ||1 ||1 ||
+
|[[M(8,5,1)]] || <math>k(C_2 \times C_2 \times C_2)</math> || 1 ||8 ||1 ||<math>1</math> || || ||1 ||1 ||
 
|-
 
|-
|[[M(8,5,2)]] || <math>B_0(k(A_5 \times C_2))</math> ||8 ||3 ||<math>C_3</math> || || ||1 ||1 ||  
+
|[[M(8,5,2)]] || <math>B_0(k(A_5 \times C_2))</math> || 1 ||8 ||3 ||<math>C_3</math> || || ||1 ||1 ||  
 
|-
 
|-
|[[M(8,5,3)]] || <math>k(A_4 \times C_2)</math> ||8 ||3 ||<math>C_3</math> || || ||1 ||1 ||  
+
|[[M(8,5,3)]] || <math>k(A_4 \times C_2)</math> || 1 ||8 ||3 ||<math>C_3</math> || || ||1 ||1 ||  
 
|-
 
|-
|[[M(8,5,4)]] || <math>k((C_2 \times C_2 \times C_2):C_7)</math> ||8 ||7 ||<math>C_7</math> || || ||1 ||1 ||  
+
|[[M(8,5,4)]] || <math>k((C_2 \times C_2 \times C_2):C_7)</math> || 1 ||8 ||7 ||<math>C_7</math> || || ||1 ||1 ||  
 
|-
 
|-
|[[M(8,5,5)]] || <math>B_0(kSL_2(8))</math> ||8 ||7 ||<math>C_7</math> || || ||1 ||1 ||  
+
|[[M(8,5,5)]] || <math>B_0(kSL_2(8))</math> || 1 ||8 ||7 ||<math>C_7</math> || || ||1 ||1 ||  
 
|-
 
|-
|[[M(8,5,6)]] || <math>k((C_2 \times C_2 \times C_2):(C_7:C_3))</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||  
+
|[[M(8,5,6)]] || <math>k((C_2 \times C_2 \times C_2):(C_7:C_3))</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||  
 
|-
 
|-
|[[M(8,5,7)]] || <math>B_0(kJ_1)</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||
+
|[[M(8,5,7)]] || <math>B_0(kJ_1)</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||
 
|-  
 
|-  
|[[M(8,5,8)]] || <math>B_0(k{\rm Aut}(SL_2(8)))</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||  
+
|[[M(8,5,8)]] || <math>B_0(k{\rm Aut}(SL_2(8)))</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 ||  
 
|}
 
|}
  

Revision as of 07:58, 15 September 2018

Blocks with defect group [math]C_2 \times C_2 \times C_2[/math]

Each of the eight [math]k[/math]-Morita equivalence classes lifts to an unique class over [math]\mathcal{O}[/math]. The classification uses the CFSG.

Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(8,5,1) [math]k(C_2 \times C_2 \times C_2)[/math] 1 8 1 [math]1[/math] 1 1
M(8,5,2) [math]B_0(k(A_5 \times C_2))[/math] 1 8 3 [math]C_3[/math] 1 1
M(8,5,3) [math]k(A_4 \times C_2)[/math] 1 8 3 [math]C_3[/math] 1 1
M(8,5,4) [math]k((C_2 \times C_2 \times C_2):C_7)[/math] 1 8 7 [math]C_7[/math] 1 1
M(8,5,5) [math]B_0(kSL_2(8))[/math] 1 8 7 [math]C_7[/math] 1 1
M(8,5,6) [math]k((C_2 \times C_2 \times C_2):(C_7:C_3))[/math] 1 8 5 [math]C_7:C_3[/math] 1 1
M(8,5,7) [math]B_0(kJ_1)[/math] 1 8 5 [math]C_7:C_3[/math] 1 1
M(8,5,8) [math]B_0(k{\rm Aut}(SL_2(8)))[/math] 1 8 5 [math]C_7:C_3[/math] 1 1

M(8,5,2) and M(8,5,3) are derived equivalent over [math]\mathcal{O}[/math].

M(8,5,4) and M(8,5,5) are derived equivalent over [math]\mathcal{O}[/math].

M(8,5,6), M(8,5,7) and M(8,5,8) are derived equivalent over [math]\mathcal{O}[/math].