Difference between revisions of "C2xC2xC2"
(Switched M(8,5,2) and M(8,5,3)) |
(Added lifting column) |
||
Line 9: | Line 9: | ||
! scope="col"| Class | ! scope="col"| Class | ||
! scope="col"| Representative | ! scope="col"| Representative | ||
+ | ! scope="col"| # lifts / <math>\mathcal{O}</math> | ||
! scope="col"| <math>k(B)</math> | ! scope="col"| <math>k(B)</math> | ||
! scope="col"| <math>l(B)</math> | ! scope="col"| <math>l(B)</math> | ||
Line 19: | Line 20: | ||
|- | |- | ||
− | |[[M(8,5,1)]] || <math>k(C_2 \times C_2 \times C_2)</math> ||8 ||1 ||<math>1</math> || || ||1 ||1 || | + | |[[M(8,5,1)]] || <math>k(C_2 \times C_2 \times C_2)</math> || 1 ||8 ||1 ||<math>1</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,2)]] || <math>B_0(k(A_5 \times C_2))</math> ||8 ||3 ||<math>C_3</math> || || ||1 ||1 || | + | |[[M(8,5,2)]] || <math>B_0(k(A_5 \times C_2))</math> || 1 ||8 ||3 ||<math>C_3</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,3)]] || <math>k(A_4 \times C_2)</math> ||8 ||3 ||<math>C_3</math> || || ||1 ||1 || | + | |[[M(8,5,3)]] || <math>k(A_4 \times C_2)</math> || 1 ||8 ||3 ||<math>C_3</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,4)]] || <math>k((C_2 \times C_2 \times C_2):C_7)</math> ||8 ||7 ||<math>C_7</math> || || ||1 ||1 || | + | |[[M(8,5,4)]] || <math>k((C_2 \times C_2 \times C_2):C_7)</math> || 1 ||8 ||7 ||<math>C_7</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,5)]] || <math>B_0(kSL_2(8))</math> ||8 ||7 ||<math>C_7</math> || || ||1 ||1 || | + | |[[M(8,5,5)]] || <math>B_0(kSL_2(8))</math> || 1 ||8 ||7 ||<math>C_7</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,6)]] || <math>k((C_2 \times C_2 \times C_2):(C_7:C_3))</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || | + | |[[M(8,5,6)]] || <math>k((C_2 \times C_2 \times C_2):(C_7:C_3))</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,7)]] || <math>B_0(kJ_1)</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || | + | |[[M(8,5,7)]] || <math>B_0(kJ_1)</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(8,5,8)]] || <math>B_0(k{\rm Aut}(SL_2(8)))</math> ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || | + | |[[M(8,5,8)]] || <math>B_0(k{\rm Aut}(SL_2(8)))</math> || 1 ||8 ||5 ||<math>C_7:C_3</math> || || ||1 ||1 || |
|} | |} | ||
Revision as of 07:58, 15 September 2018
Blocks with defect group [math]C_2 \times C_2 \times C_2[/math]
Each of the eight [math]k[/math]-Morita equivalence classes lifts to an unique class over [math]\mathcal{O}[/math]. The classification uses the CFSG.
Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|---|
M(8,5,1) | [math]k(C_2 \times C_2 \times C_2)[/math] | 1 | 8 | 1 | [math]1[/math] | 1 | 1 | |||
M(8,5,2) | [math]B_0(k(A_5 \times C_2))[/math] | 1 | 8 | 3 | [math]C_3[/math] | 1 | 1 | |||
M(8,5,3) | [math]k(A_4 \times C_2)[/math] | 1 | 8 | 3 | [math]C_3[/math] | 1 | 1 | |||
M(8,5,4) | [math]k((C_2 \times C_2 \times C_2):C_7)[/math] | 1 | 8 | 7 | [math]C_7[/math] | 1 | 1 | |||
M(8,5,5) | [math]B_0(kSL_2(8))[/math] | 1 | 8 | 7 | [math]C_7[/math] | 1 | 1 | |||
M(8,5,6) | [math]k((C_2 \times C_2 \times C_2):(C_7:C_3))[/math] | 1 | 8 | 5 | [math]C_7:C_3[/math] | 1 | 1 | |||
M(8,5,7) | [math]B_0(kJ_1)[/math] | 1 | 8 | 5 | [math]C_7:C_3[/math] | 1 | 1 | |||
M(8,5,8) | [math]B_0(k{\rm Aut}(SL_2(8)))[/math] | 1 | 8 | 5 | [math]C_7:C_3[/math] | 1 | 1 |
M(8,5,2) and M(8,5,3) are derived equivalent over [math]\mathcal{O}[/math].
M(8,5,4) and M(8,5,5) are derived equivalent over [math]\mathcal{O}[/math].
M(8,5,6), M(8,5,7) and M(8,5,8) are derived equivalent over [math]\mathcal{O}[/math].