Difference between revisions of "M(2^n,1,1)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(2^n,1,1) - <math>kC_{2^n}</math> |image = |representative = <math>kC_{2^n}</math> |defect = <math>C_{2^n}</math> |inertialquotients = <math...")
(No difference)

Latest revision as of 15:03, 8 September 2018

M(2^n,1,1) - [math]kC_{2^n}[/math]
Representative: [math]kC_{2^n}[/math]
Defect groups: [math]C_{2^n}[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] [math]2^n[/math]
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{c} 2^n \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_{2^n}[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=C_{2^n}:C_{2^{n-1}}[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_{2^n}[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: {{{coveringblocks}}}
[math]p'[/math]-index covered blocks: {{{coveredblocks}}}
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

These are nilpotent blocks.

Basic algebra

Quiver: a:<1,1>

Relations w.r.t. [math]k[/math]: [math]a^{2^n}=0[/math]

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]B[/math] or [math]b[/math] is in M(2^n,1,1), then [math]B[/math] and [math]b[/math] must be Morita equivalent.

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} S_1 \\ S_1 \\ \vdots \\ S_1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_{2^n}[/math]