Difference between revisions of "Glossary"

From Block library
Jump to: navigation, search
(Splendid equivalence)
Line 23: Line 23:
 
=== Possible Brauer tree (for a given cyclic defect group) ===
 
=== Possible Brauer tree (for a given cyclic defect group) ===
  
Given a cyclic <math>p</math>-group <math>P</math>, the Brauer trees whose vertex multiplicities add to <math>|P|</math>, where non-exceptional vertices are regarded as having multiplicity <math>1</math>.
+
Fix a cyclic group <math>P</math> of order <math>p^n</math>. A block with defect group <math>P</math> has inertial index <math>e</math> a divisor of <math>p-1</math>. The number of irreducible characters in the block is <math>e+\frac{|P|-1}{e}</math>. The exceptional vertex has multiplicity <math>\frac{|P|-1}{e}</math>.
 +
 
 +
The possibile Brauer trees (for <math>P</math> and <math>e</math> a divisor of <math>p-1</math>) are the Brauer trees whose vertex multiplicities add to <math>e+\frac{|P|-1}{e}</math> where the exceptional vertex multiplicity is <math>\frac{|P|-1}{e}</math> and non-exceptional vertices are regarded as having multiplicity <math>1</math>.
  
 
=== Splendid equivalence ===
 
=== Splendid equivalence ===
  
 
May apply to Morita equivalences, stable equivalences and derived equivalences. See 9.7 an 9.8 of [[References|[Li18d]]]. It means roughly equivalences given by (complexes of) trivial source bimodules.
 
May apply to Morita equivalences, stable equivalences and derived equivalences. See 9.7 an 9.8 of [[References|[Li18d]]]. It means roughly equivalences given by (complexes of) trivial source bimodules.

Revision as of 10:55, 12 October 2018

This page will contain an alphabetical glossary of terms used.

Basic Morita/stable equivalence

Morita/stable equivalence of blocks induced by a bimodule which has endopermutation source.

CFSG

The classification of finite simple groups.

Fusion system

Fusion system on a finite [math]p[/math]-group. See [Cr11] or [AKO11]. The fusion system given by a finite group [math]G[/math] on a Sylow [math]p[/math]-subgroup [math]P[/math] is written [math]\mathcal{F}_P(G)[/math].

# lifts / [math]\mathcal{O}[/math]

The number of [math]\mathcal{O}[/math]-Morita equivalence classes of blocks reducing to a representative of the given [math]k[/math]-class.

Picard group

Let [math]R[/math] be a commutative ring and [math]A[/math] an [math]R[/math]-algebra. The Picard group [math]{\rm Pic}_R(A)[/math] has elements isomorphism classes of [math]A[/math]-[math]A[/math]-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over [math]A[/math].

Possible Brauer tree (for a given cyclic defect group)

Fix a cyclic group [math]P[/math] of order [math]p^n[/math]. A block with defect group [math]P[/math] has inertial index [math]e[/math] a divisor of [math]p-1[/math]. The number of irreducible characters in the block is [math]e+\frac{|P|-1}{e}[/math]. The exceptional vertex has multiplicity [math]\frac{|P|-1}{e}[/math].

The possibile Brauer trees (for [math]P[/math] and [math]e[/math] a divisor of [math]p-1[/math]) are the Brauer trees whose vertex multiplicities add to [math]e+\frac{|P|-1}{e}[/math] where the exceptional vertex multiplicity is [math]\frac{|P|-1}{e}[/math] and non-exceptional vertices are regarded as having multiplicity [math]1[/math].

Splendid equivalence

May apply to Morita equivalences, stable equivalences and derived equivalences. See 9.7 an 9.8 of [Li18d]. It means roughly equivalences given by (complexes of) trivial source bimodules.