Classification by p-group
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes | |
8 | 1 | [math]C_8[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 2 | [math]C_4 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 3 | [math]D_8[/math] | 4(?) | [math]k[/math] | |||
8 | 4 | [math]Q_8[/math] | 3(?) | [math]k[/math] | |||
8 | 5 | [math]C_2 \times C_2 \times C_2[/math] | 8(8) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | Uses CFSG | |
9 | 1 | [math]C_9[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
9 | 2 | [math]C_3 \times C_3[/math] | |||||
11 | 1 | [math]C_{11}[/math] | No | [math]\mathcal{O}[/math] | |||
13 | 1 | [math]C_{13}[/math] | No | [math]\mathcal{O}[/math] | |||
16 | 1 | [math]C_{16}[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
16 | 2 | [math]C_4 \times C_4[/math] | |||||
16 | 3 | SmallGroup(16,3) | |||||
16 | 4 | [math]C_4:C_4[/math] | |||||
16 | 5 | [math]C_8 \times C_2[/math] | |||||
16 | 6 | [math]M_{16}[/math] | |||||
16 | 7 | [math]D_{16}[/math] | |||||
16 | 8 | [math]SD_{16}[/math] | |||||
16 | 9 | [math]Q_{16}[/math] | |||||
16 | 10 | [math]C_4 \times C_2 \times C_2[/math] | |||||
16 | 11 | [math]D_8 \times C_2[/math] | |||||
16 | 12 | [math]Q_8 \times C_2[/math] | |||||
16 | 13 | [math]D_8*C_4[/math] | |||||
16 | 14 | [math](C_2)^4[/math] |