M(4,2,1)
Revision as of 08:35, 4 December 2018 by Charles Eaton (talk | contribs)
M(4,2,1) - [math]k(C_2 \times C_2)[/math]
Representative: | [math]k(C_2 \times C_2)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 4 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math](k \times k):GL_2(k)[/math] |
Cartan matrix: | [math]\left( \begin{array}{c} 4 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_2 \times C_2)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=S_4[/math] |
[math]PI(B)=[/math] | |
Source algebras known? | Yes |
Source algebra reps: | [math]k(C_2 \times C_2)[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(4,2,1), M(4,2,3) (complete) |
[math]p'[/math]-index covered blocks: | M(4,2,1), M(4,2,3)[1] (complete) |
Index [math]p[/math] covering blocks: | M(8,2,1), M(8,3,1), M(8,5,1) (complete) |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>
Relations w.r.t. [math]k[/math]: a^2=b^2=ab+ba=0
Other notatable representatives
Block number 2 of [math]k PGL_3(7)[/math] in the labelling used in [2]
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{ccc} & S_1 & \\ S_1 & & S_1 \\ & S_1 & \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Back to [math]C_2 \times C_2[/math]