SD16
Revision as of 18:23, 14 November 2018 by Charles Eaton (talk | contribs)
Blocks with defect group [math]SD_{16}[/math]
These are examples of tame blocks and were first classified over [math]k[/math] by Erdmann (see [Er88c], [Er90b]). It is not known (to me at least) whether there are blocks realising the classes M(16,8,8) and M(16,8,10).
The classification with respect to [math]\mathcal{O}[/math] is still unknown.
CLASSIFICATION INCOMPLETE
Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|---|
M(16,8,1) | [math]kSD_{16}[/math] | 1 | 7 | 1 | [math]1[/math] | 1 | ||||
M(16,8,2) | [math]B_5(kPSU_3(5))[/math] | ? | 8 | 2 | [math]1[/math] | 1 | [math]SD(2 {\cal A})_1[/math] | |||
M(16,8,3) | [math]B_0(kM_{10})=B_0(k(A_6.2_3))[/math] | ? | 7 | 2 | [math]1[/math] | 1 | [math]SD(2 {\cal A})_2[/math] | |||
M(16,8,4) | [math]B_3(k(3.M_{10}))=B_3(k(3.A_6.2_3))[/math] | ? | 7 | 2 | [math]1[/math] | 1 | [math]SD(2 {\cal B})_1[/math] | |||
M(16,8,5) | [math]B_1(kPSL_3(11))[/math] | ? | 8 | 2 | [math]1[/math] | 1 | [math]SD(2 {\cal B})_2[/math] | |||
M(16,8,6) | [math]B_0(kPSU_3(5))[/math] | ? | 8 | 3 | [math]1[/math] | 1 | [math]SD(3 {\cal A})_1[/math] | |||
M(16,8,7) | [math]B_0(kPSL_3(3))[/math] | ? | 8 | 3 | [math]1[/math] | 1 | [math]SD(3 {\cal B})_1[/math] | |||
M(16,8,8) | ? | 8 | 3 | [math]1[/math] | 1 | [math]SD(3 {\cal C})_2[/math] | ||||
M(16,8,9) | [math]B_0(kM_{11})[/math] | ? | 8 | 3 | [math]1[/math] | 1 | [math]SD(3 {\cal D})[/math] | |||
M(16,8,10) | ? | 8 | 3 | [math]1[/math] | 1 | [math]SD(3 {\cal H})[/math] |
M(16,8,2) and M(16,8,5) are derived equivalent over [math]k[/math] by [Ho97] .
M(16,8,3) and M(16,8,4) are derived equivalent over [math]k[/math] by [Ho97] .
All Morita equivalence classes with three simple modules are derived equivalent over [math]k[/math] by [Ho97] .