M(8,3,4)

From Block library
Revision as of 16:51, 4 October 2018 by Charles Eaton (talk | contribs) (Created page with "{{blockbox |title = M(8,4,3) - <math>B_0(kPSL_2(9))</math> |image = M(4,2,2)quiver.png |representative = <math>B_0(kPSL_2(9))</math> |defect = <math>D_8</math> |inert...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
M(8,4,3) - [math]B_0(kPSL_2(9))[/math]
M(4,2,2)quiver.png
Representative: [math]B_0(kPSL_2(9))[/math]
Defect groups: [math]D_8[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 5
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{ccc} 3 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}A_5)[/math]
Decomposition matrices: [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,3,5), M(8,3,6)
[math]\mathcal{O}[/math]-derived equiv. classes known?
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

These are tame blocks, and appear in the family [math]D(3 {\cal A})_1[/math] in Erdmann's classification (see [Er87]). Derived equivalences over [math]k[/math] are established in [Li94b].

Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>

Relations w.r.t. [math]k[/math]: [math]ad=cb=(bcda)^2+(dabc)^2=0[/math]

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ \end{array}, & \begin{array}{ccc} & 2 & \\ \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ \end{array} & \oplus & \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ \end{array} \\ & 2 & \\ \end{array}, & \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ \end{array} \end{array} [/math]

Irreducible characters

[math]k_0(B)=4, \ k_1(B)=1[/math]

Back to [math]D_8[/math]