Notation

From Block library
Revision as of 17:06, 23 August 2018 by Charles Eaton (talk | contribs) (Created page with "<math>(K,\mathcal{O},k)</math> is a <math>p</math>-modular system, where <math>\mathcal{O}</math> is a complete discrete valuation ring with algebraically closed residue field...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

[math](K,\mathcal{O},k)[/math] is a [math]p[/math]-modular system, where [math]\mathcal{O}[/math] is a complete discrete valuation ring with algebraically closed residue field [math]k=\mathcal{O}/J(\mathcal{O})[/math] and [math]K[/math] is the field of fractions of [math]\mathcal{O}[/math], of characteristic zero. In order to make a consistent choice of [math](K,\mathcal{O},k)[/math] we take [math]k[/math] to be the algebraic closure of the field with [math]p[/math] elements and [math]\mathcal{O}[/math] to be the ring of Witt vectors for [math]k[/math] This has the disadvantage that for [math]G[/math] a finite group [math]KG[/math] need not contain the primitive character idempotents, but this condition can usually be avoided.

In the below, [math]G[/math] is a finite group and [math]B[/math] is a block of [math]kG[/math] or [math]\mathcal{O}G[/math] depending on the context.

[math]k(B)[/math] Number of irreducible characters in [math]B[/math]
[math]l(B)[/math] Number of isomorphism classes of simple [math]B[/math]-modules