Q8
Blocks with defect group [math]Q_8[/math]
These are examples of tame blocks and were first classified over [math]k[/math] by Erdmann (see [Er87] ). The Morita equivalence classes lift to unique Morita equivalence classes over [math]\mathcal{O}[/math] by [HKL07], [Ei16] and the theory of nilpotent blocks.
Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|---|
M(8,4,1) | [math]kQ_8[/math] | 1 | 5 | 1 | [math]1[/math] | [math]S_4[/math] | 1 | 1 | ||
M(8,4,2) | [math]B_0(kSL_2(5))[/math] | 1 | 7 | 3 | [math]C_3[/math] | [math]C_2[/math] | 1 | [math]Q(3 {\cal A})_2[/math] | ||
M(8,4,3) | [math]kSL_2(3)[/math] | 1 | 7 | 3 | [math]C_3[/math] | [math]S_3[/math] | 1 | 1 | [math]Q(3 {\cal K})[/math] |
M(8,4,2) and M(8,4,3) are derived equivalent over [math]k[/math] by [Ho97] .