Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
Blocks of defect zero
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Blocks for [math] p=2 [/math]
Defect group of size [math]2[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
2 |
1 |
[math]C_2[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]4[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
4 |
1 |
[math]C_4[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
4 |
2 |
[math]C_2 \times C_2[/math] |
3(3) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
[Er82], [Li94] |
|
Blocks for [math]p=3[/math]
Defect group of size [math]3[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
3 |
1 |
[math]C_3[/math] |
2(2) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]9[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
9 |
1 |
[math]C_9[/math] |
3(3) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
9 |
2 |
[math]C_3 \times C_3[/math] |
|
|
|
|
|
Blocks for [math]p=5[/math]
Defect group of size [math]5[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
5 |
1 |
[math]C_5[/math] |
6(6) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]25[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
25 |
1 |
[math]C_{25}[/math] |
5(5) |
No |
[math]\mathcal{O}[/math] |
|
Max 12 classes
|
25 |
2 |
[math]C_5 \times C_5[/math] |
|
|
|
|
|
Blocks for [math]p\geq 7[/math]