M(9,2,16)

From Block library
Revision as of 15:43, 18 December 2018 by Charles Eaton (talk | contribs)
Jump to: navigation, search
M(9,2,16) - [math]B_0(kPSL_3(4))[/math]
[[File:|250px]]
Representative: [math]B_0(kPSL_3(4))[/math]
Defect groups: [math]C_3 \times C_3[/math]
Inertial quotients: [math]Q_8[/math]
[math]k(B)=[/math] 6
[math]l(B)=[/math] 5
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{ccccc} 2 & 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 5 & 4 \\ 1 & 2 & 2 & 4 & 5 \\ \end{array} \right)[/math]
Defect group Morita invariant?
Inertial quotient Morita invariant?
[math]\mathcal{O}[/math]-Morita classes known?
[math]\mathcal{O}[/math]-Morita classes:
Decomposition matrices: [math]\left( \begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? No
[math]k[/math]-derived equivalent to:
[math]\mathcal{O}[/math]-derived equiv. classes known? No
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

Basic algebra

Quiver:

Relations w.r.t. [math]k[/math]:

Other notatable representatives

[math]B_2(kO'N)[/math][1], [math]B_0(kPSL_3(q))[/math] for [math]q \equiv 4 \ {\rm or} \ 7 \mod 9[/math][2], [math]B_2(kSuz)[/math][3]

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_3 \times C_3[/math]

Notes

  1. See p.202 of [KKW02]
  2. See Theorem 1.2 of [Ku00]
  3. See [KKW04]