5 +^3

From Block library
Revision as of 14:00, 3 October 2023 by Charles Eaton (talk | contribs) (Created page with "== Blocks with defect group <math>5_+^{1+2}</math> == 50px|left The Morita equivalence classes of blocks with this defect group are classifi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Blocks with defect group [math]5_+^{1+2}[/math]

Under-construction.png

The Morita equivalence classes of blocks with this defect group are classified in [AE23]. Blocks in the same Morita equivalence class have the same fusion, and so the same inertial quotient, and the same Külshammer-Puig class.

Class Representative # lifts / [math]\mathcal{O}[/math] [math]k_0(B)[/math] [math]k_1(B)[/math] [math]l(B)[/math] Inertial quotient [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] Notes
M(125,3,1) [math]k5_+^{1+2}[/math] 1 20 4 1 [math]1[/math]
M(125,3,2) [math]k5_+^{1+2}:C_2[/math] 1 20 2 2 [math]C_2[/math] SmallGroup(250,5)
M(125,3,3) [math]k5_+^{1+2}:C_2[/math] 1 14 8 2 [math]C_2[/math] SmallGroup(250,8)
M(125,3,4) [math]k5_+^{1+2}:C_3[/math] 1 11 12 3 [math]C_3[/math] SmallGroup(375,2)
M(125,3,5) [math]k5_+^{1+2}:C_4[/math] 1 25 1 4 [math]C_4[/math] SmallGroup(500,17)
M(125,3,6) [math]k5_+^{1+2}:C_4[/math] 1 13 1 4 [math]C_4[/math] SmallGroup(500,21)
M(125,3,7) [math]k(C_5 \times C_5):SL_2(5)[/math] 1 13 1 5 [math]C_4[/math] Inertial quotient as in M(125,3,6)
M(125,3,8) [math]k5_+^{1+2}:C_4[/math] 1 10 4 4 [math]C_4[/math] SmallGroup(500,23)
M(125,3,9) [math]k5_+^{1+2}:C_4[/math] 1 10 16 4 [math]C_4[/math] SmallGroup(500,25)
M(125,3,10) [math]k5_+^{1+2}:(C_2 \times C_2)[/math] 1 16 4 4 [math]C_2 \times C_2[/math] SmallGroup(500,27)
M(125,3,11) Faithful block of [math]k5_+^{1+2}:Q_8[/math], in which [math]Z(Q_8)[/math] acts trivially 1 13 4 1 [math]C_2 \times C_2[/math] SmallGroup(1000,42)
M(125,3,12) [math]k5_+^{1+2}:C_6[/math] 1 10 24 6 [math]C_6[/math] SmallGroup(750,6)
M(125,3,13) [math]k5_+^{1+2}:S_3[/math] 1 13 6 3 [math]S_3[/math] SmallGroup(750,5)
M(125,3,14) [math]k5_+^{1+2}:C_8[/math] 1 11 2 8 [math]C_8[/math] SmallGroup(1000,86)
M(125,4,15) [math]B_0(kSU_3(5))[/math] 1 11 2 8 [math]C_8[/math]
M(125,3,16) Faithful block of maximal defect of [math]k(3.SU_3(5))[/math] 1 11 2 8 [math]C_8[/math]
M(125,3,17) [math]k5_+^{1+2}:(C_4 \times C_2)[/math] 1 20 2 8 [math]C_4 \times C_2[/math] SmallGroup(1000,89)
M(125,3,18) Faithful block of [math]k5_+^{1+2}:M_4(2)[/math], in which [math]M_4(2)'[/math] acts trivially 1 14 2 2 [math]C_2 \times C_2[/math] SmallGroup(2000,250)
M(125,3,20) [math]k5_+^{1+2}:(C_4 \times C_2)[/math] 1 14 8 8 [math]C_4 \times C_2[/math] SmallGroup(1000,91)
M(125,3,21) Faithful block of [math]k5_+^{1+2}:M_4(2)[/math], in which [math]M_4(2)'[/math] acts trivially 1 8 8 2 [math]C_2 \times C_2[/math] SmallGroup(2000,264)
M(125,3,22) [math]k5_+^{1+2}:D_8[/math] 1 14 8 5 [math]D_8[/math] SmallGroup(1000,92)
M(125,3,23) Faithful block of [math]k5_+^{1+2}:D_{16}[/math], in which [math]Z(D_{16})[/math] acts trivially 1 11 8 2 [math]D_8[/math]
M(125,3,24) [math]k5_+^{1+2}:Q_8[/math] 1 8 20 5 [math]Q_8[/math] SmallGroup(1000,93)
M(125,3,25) [math]k5_+^{1+2}:(C_3:C_4)[/math] 1 8 24 6 [math]C_3:C_4[/math] SmallGroup(1500,35)
M(125,3,26) [math]k5_+^{1+2}:C_{12}[/math] 1 14 12 12 [math]C_{12}[/math] SmallGroup(1500,36)
M(125,3,27) [math]k5_+^{1+2}:D_{12}[/math] 1 14 12 6 [math]D_{12}[/math] SmallGroup(1000,37)
M(125,3,28) Faithful block of [math]k5_+^{1+2}:D_{24}[/math], in which [math]Z(D_{24})[/math] acts trivially 1 10 4 1 [math]D_{12}[/math]
M(125,3,29) [math]k5_+^{1+2}:(C_4 \times C_4)[/math] 1 25 4 16 [math]C_4 \times C_4[/math] SmallGroup(2000,473)
M(125,3,30) Faithful block of [math]k5_+^{1+2}:(C_2.(C_4 \times C_4))[/math], in which [math](C_2.(C_4 \times C_4))'[/math] acts trivially 1 13 4 4 [math]C_4 \times C_4[/math] [math]C_2.(C_4 \times C_4[/math] is SmallGroup(32,2)
M(125,3,31) Faithful block of [math]k5_+^{1+2}:((C_4 \times C_4):C_4)[/math], in which [math]Z((C_4 \times C_4):C_4)[/math] acts trivially 1 10 4 1 [math]C_4 \times C_4[/math] [math](C_4 \times C_4):C_4[/math] is SmallGroup(64,18)
M(125,3,32) [math]k(C_5 \times C_5):GL_2(5)[/math] 1 25 4 20 [math]C_4 \times C_4[/math]
M(125,3,33) [math]B_0(kSL_3(5))[/math] 1 25 4 24 [math]C_4 \times C_4[/math]