M(16,10,3)
Revision as of 20:53, 5 December 2018 by Charles Eaton (talk | contribs)
M(16,10,3) - [math]k(C_4 \times A_4)[/math]
Representative: | [math]k(C_4 \times A_4)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccc} 8 & 4 & 4 \\ 4 & 8 & 4 \\ 4 & 4 & 8 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_4 \times A_4)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]D_8 \times S_3[/math][1] |
[math]PI(B)=[/math] | [math]D_8 \times S_4 \times C_2[/math][2] |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(16,10,2) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f: <1,3>, g:<1,1>, h:<2,2>, i:<3,3>
Relations w.r.t. [math]k[/math]: [math]ab=bc=ca=0[/math], [math]df=fe=ed=0[/math], [math]ad=fc[/math], [math]be=da[/math], [math]cf=eb[/math], [math]g^4=h^4=i^4=0[/math], [math]ah=ga[/math], [math]bi=hb[/math], [math]cg=ic[/math], [math]dg=hd[/math], [math]eh=ie[/math], [math]fi=gf[/math]
Other notatable representatives
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Back to [math]C_4 \times C_2 \times C_2[/math]