M(8,5,7)

From Block library
Revision as of 16:26, 21 November 2018 by Charles Eaton (talk | contribs)
Jump to: navigation, search
M(8,5,7) - [math]B_0(kJ_1)[/math]
M(8,5,7)quiver.png
Representative: [math]B_0(kJ_1)[/math]
Defect groups: [math]C_2 \times C_2 \times C_2[/math]
Inertial quotients: [math]C_7:C_3[/math]
[math]k(B)=[/math] 8
[math]l(B)=[/math] 5
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccccc} 8 & 4 & 4 & 4 & 4 \\ 4 & 4 & 3 & 3 & 1 \\ 4 & 3 & 4 & 2 & 2 \\ 4 & 3 & 2 & 4 & 2 \\ 4 & 1 & 2 & 2 & 4 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}J_1)[/math]
Decomposition matrices: [math]\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]1[/math][1]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:  
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,5,6), M(8,5,8)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a:<1,4>, b:<4,2>, c:<2,3>, d:<3,1>, e:<1,5>, f:<5,5>, g:<5,1>, h:<1,3>, i:<3,2>, j:<2,4>, k:<4,1>

Relations w.r.t. [math]k[/math]:

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3,4,5[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccccc} \begin{array}{c} 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \ 2 \ 1 \\ 3 \ 3 \ 4 \ 4 \ 5 \ 5 \\ 1 \ 2 \ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 3 \ 4 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \\ 2 \\ \end{array}, & \begin{array}{c} 3 \\ 1 \ 2 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \\ 3 \\ \end{array} , & \begin{array}{c} 4 \\ 1 \ 2 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \\ 4 \\ \end{array}, & \begin{array}{ccc} 5 \\ 1 \ 5 \\ 3 \ 4 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \\ 5 \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_2 \times C_2 \times C_2[/math]

Notes

  1. See [EL18c]. Also shown by Eisele by a different method.