Difference between revisions of "M(16,14,12)"
(Created page with "{{blockbox |title = M(16,14,12) - <math>B_0(k(SL_2(16)))</math> |image = |representative = <math>B_0(k(SL_2(16)))</math> |defect = <math>(C_2)^4</math>...") |
(No difference)
|
Revision as of 13:35, 28 November 2019
Representative: | [math]B_0(k(SL_2(16)))[/math] |
---|---|
Defect groups: | [math](C_2)^4[/math] |
Inertial quotients: | [math]C_{15}[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 15 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | See below |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}(SL_2(16)))[/math] |
Decomposition matrices: | See below |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]C_{15}:C_4[/math] |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(16,14,11) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(16,14,12), then [math]B[/math] is also in M(16,14,12).
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Cartan matrix
[math]\left( \begin{array}{ccccccc} 16 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 \\ 8 & 8 & 4 & 4 & 4 & 2 & 4 & 2 & 2 & 4 & 0 & 2 & 0 & 0 & 1 \\ 8 & 4 & 8 & 4 & 4 & 4 & 2 & 0 & 2 & 2 & 4 & 1 & 2 & 0 & 0 \\ 8 & 4 & 4 & 8 & 4 & 2 & 4 & 4 & 0 & 2 & 2 & 0 & 1 & 2 & 0 \\ 8 & 4 & 4 & 4 & 8 & 4 & 2 & 2 & 4 & 0 & 2 & 0 & 0 & 1 & 2 \\ 4 & 2 & 4 & 2 & 4 & 4 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 \\ 4 & 4 & 2 & 4 & 2 & 1 & 4 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 4 & 2 & 0 & 4 & 2 & 0 & 2 & 4 & 0 & 1 & 0 & 0 & 0 & 2 & 0 \\ 4 & 2 & 2 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 1 & 0 & 0 & 0 & 2 \\ 4 & 4 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 4 & 0 & 2 & 0 & 0 & 0 \\ 4 & 0 & 4 & 2 & 2 & 2 & 0 & 0 & 1 & 0 & 4 & 0 & 2 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 \end{array}\right)[/math]
Decomposition matrix
[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{array}\right)[/math]