M(16,14,12)

From Block library
Jump to: navigation, search
M(16,14,12) - [math]B_0(k(SL_2(16)))[/math]
[[File: |250px]]
Representative: [math]B_0(k(SL_2(16)))[/math]
Defect groups: [math](C_2)^4[/math]
Inertial quotients: [math]C_{15}[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 15
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: See below
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}(SL_2(16)))[/math]
Decomposition matrices: See below
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]C_4[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(16,14,11)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(16,14,12), then [math]B[/math] is also in M(16,14,12).

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.


Cartan matrix

[math]\left( \begin{array}{ccccccc} 16 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 \\ 8 & 8 & 4 & 4 & 4 & 2 & 4 & 2 & 2 & 4 & 0 & 2 & 0 & 0 & 1 \\ 8 & 4 & 8 & 4 & 4 & 4 & 2 & 0 & 2 & 2 & 4 & 1 & 2 & 0 & 0 \\ 8 & 4 & 4 & 8 & 4 & 2 & 4 & 4 & 0 & 2 & 2 & 0 & 1 & 2 & 0 \\ 8 & 4 & 4 & 4 & 8 & 4 & 2 & 2 & 4 & 0 & 2 & 0 & 0 & 1 & 2 \\ 4 & 2 & 4 & 2 & 4 & 4 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 \\ 4 & 4 & 2 & 4 & 2 & 1 & 4 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 4 & 2 & 0 & 4 & 2 & 0 & 2 & 4 & 0 & 1 & 0 & 0 & 0 & 2 & 0 \\ 4 & 2 & 2 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 1 & 0 & 0 & 0 & 2 \\ 4 & 4 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 4 & 0 & 2 & 0 & 0 & 0 \\ 4 & 0 & 4 & 2 & 2 & 2 & 0 & 0 & 1 & 0 & 4 & 0 & 2 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 \end{array}\right)[/math]

Decomposition matrix

[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{array}\right)[/math]

Back to [math](C_2)^4[/math]