Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
Line 55: Line 55:
 
|16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || <math>\mathcal{O}</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14] ]] ||
 
|16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || <math>\mathcal{O}</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14] ]] ||
 
|-
 
|-
|16 || [[MNA(2,1)|3]] || [[MNA(2,1)]] || No || || || || [[References|[Sa11] ]] || Block invariants known
+
|16 || [[MNA(2,1)|3]] || [[MNA(2,1)]] || No || 3(?) || No || || [[References|[Sa11] ]] || Block invariants known
 
|-
 
|-
 
|16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || <math>\mathcal{O}</math>|| 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || <math>\mathcal{O}</math>|| 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
Line 75: Line 75:
 
|16 || [[Q8xC2|12]] || [[Q8xC2|<math>Q_8 \times C_2</math>]] || No || || || || [[References|[Sa13] ]] || Block invariants known
 
|16 || [[Q8xC2|12]] || [[Q8xC2|<math>Q_8 \times C_2</math>]] || No || || || || [[References|[Sa13] ]] || Block invariants known
 
|-
 
|-
|16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || No || || || || [[References|[Sa13b] ]] || Block invariants known
+
|16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || No || 3(?) || No || || [[References|[Sa13b] ]] || Block invariants known
 
|-
 
|-
 
|16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || <math>\mathcal{O}</math> || 16(16) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Ea18] ]] ||
 
|16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || <math>\mathcal{O}</math> || 16(16) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Ea18] ]] ||

Revision as of 10:21, 15 August 2019

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks for [math] p=2 [/math]

The following takes as its starting point Table 13.1 of Sambale's book [Sa14].

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]