Difference between revisions of "C16xC2"

From Block library
Jump to: navigation, search
(Created page with "__NOTITLE__ == Blocks with defect group <math>C_{16} \times C_2</math> == <math>{\rm Aut}(C_{16} \times C_2)</math> is a <math>2</math>-group and <math>C_{16} \times C_2</ma...")
 
(No difference)

Latest revision as of 10:25, 13 August 2019

Blocks with defect group [math]C_{16} \times C_2[/math]

[math]{\rm Aut}(C_{16} \times C_2)[/math] is a [math]2[/math]-group and [math]C_{16} \times C_2[/math] is abelian, so there is only one possible fusion system. Hence every block with this defect group is nilpotent.

There is a unique [math]\mathcal{O}[/math]-Morita equivalence class.

Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(32,16,1) [math]k(C_{16} \times C_2)[/math] 1 32 1 [math]1[/math] [math](C_{16} \times C_2):{\rm Aut}(C_{16} \times C_2)[/math] 1 1