Difference between revisions of "C16xC2"
(Created page with "__NOTITLE__ == Blocks with defect group <math>C_{16} \times C_2</math> == <math>{\rm Aut}(C_{16} \times C_2)</math> is a <math>2</math>-group and <math>C_{16} \times C_2</ma...") |
(No difference)
|
Latest revision as of 10:25, 13 August 2019
Blocks with defect group [math]C_{16} \times C_2[/math]
[math]{\rm Aut}(C_{16} \times C_2)[/math] is a [math]2[/math]-group and [math]C_{16} \times C_2[/math] is abelian, so there is only one possible fusion system. Hence every block with this defect group is nilpotent.
There is a unique [math]\mathcal{O}[/math]-Morita equivalence class.
Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|---|
M(32,16,1) | [math]k(C_{16} \times C_2)[/math] | 1 | 32 | 1 | [math]1[/math] | [math](C_{16} \times C_2):{\rm Aut}(C_{16} \times C_2)[/math] | 1 | 1 |