Difference between revisions of "Glossary"
(MNA(r,s)) |
|||
Line 43: | Line 43: | ||
The possibile Brauer trees (for <math>P</math> and <math>e</math> a divisor of <math>p-1</math>) are the Brauer trees whose vertex multiplicities add to <math>e+\frac{|P|-1}{e}</math> where the exceptional vertex multiplicity is <math>\frac{|P|-1}{e}</math> and non-exceptional vertices are regarded as having multiplicity <math>1</math>. | The possibile Brauer trees (for <math>P</math> and <math>e</math> a divisor of <math>p-1</math>) are the Brauer trees whose vertex multiplicities add to <math>e+\frac{|P|-1}{e}</math> where the exceptional vertex multiplicity is <math>\frac{|P|-1}{e}</math> and non-exceptional vertices are regarded as having multiplicity <math>1</math>. | ||
+ | |||
+ | === Source algebra === | ||
+ | |||
+ | Introduced by Puig, these are subalgebras of a block <math>B</math> of a finite group (and more generally for a <math>G</math>-algebra) not only Morita equivalent to <math>B</math> but also determining the fusion system. See [[References#L|[Li18c,5.6.12]]]. | ||
=== Splendid equivalence === | === Splendid equivalence === |
Revision as of 09:49, 19 December 2018
Contents
- 1 Basic Morita/stable equivalence
- 2 CFSG
- 3 Fusion system
- 4 Index p covering blocks
- 5 # lifts / [math]\mathcal{O}[/math]
- 6 MNA(r,s)
- 7 p'-index covered blocks
- 8 p'-index covering blocks
- 9 Picard group
- 10 Possible Brauer tree (for a given cyclic defect group)
- 11 Source algebra
- 12 Splendid equivalence
- 13 Trivial intersection subgroup
Basic Morita/stable equivalence
Morita/stable equivalence of blocks induced by a bimodule which has endopermutation source.
CFSG
The classification of finite simple groups.
Fusion system
Fusion system on a finite [math]p[/math]-group. See [Cr11] or [AKO11]. The fusion system given by a finite group [math]G[/math] on a Sylow [math]p[/math]-subgroup [math]P[/math] is written [math]\mathcal{F}_P(G)[/math].
Index p covering blocks
Fix a Morita equivalence class [math]M[/math]. This lists Morita equivalence classes containing a block [math]B[/math] of [math]kG[/math] for some finite group [math]G[/math] such that [math]B[/math] covers a block [math]b[/math] in [math]M[/math] of [math]kN[/math] for some normal subgroup [math]N[/math] of [math]G[/math] of index [math]p[/math].
# lifts / [math]\mathcal{O}[/math]
The number of [math]\mathcal{O}[/math]-Morita equivalence classes of blocks reducing to a representative of the given [math]k[/math]-class.
MNA(r,s)
A class of minimal nonabelian [math]2[/math]-groups, that is nonabelian [math]2[/math]-groups such that every proper subgroup is abelian. For [math]r \geq s \geq 1[/math]
\[ MNA(r,s) = \langle x,y|x^{2^r}=y^{2^s}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle . \]
p'-index covered blocks
Fix a Morita equivalence class [math]M[/math]. This lists Morita equivalence classes containing a block [math]b[/math] of [math]kN[/math] for some finite group [math]N[/math] such that [math]b[/math] is covered by a block [math]B[/math] in [math]M[/math] of [math]kG[/math] for some finite group [math]G[/math] containing [math]N[/math] as a normal subgroup of prime index different to [math]p[/math].
p'-index covering blocks
Fix a Morita equivalence class [math]M[/math]. This lists Morita equivalence classes containing a block [math]B[/math] of [math]kG[/math] for some finite group [math]G[/math] such that [math]B[/math] covers a block [math]b[/math] in [math]M[/math] of [math]kN[/math] for some normal subgroup [math]N[/math] of [math]G[/math] of prime index different to [math]p[/math].
Picard group
Let [math]R[/math] be a commutative ring and [math]A[/math] an [math]R[/math]-algebra. The Picard group [math]{\rm Pic}_R(A)[/math] has elements isomorphism classes of [math]A[/math]-[math]A[/math]-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over [math]A[/math].
Possible Brauer tree (for a given cyclic defect group)
Fix a cyclic group [math]P[/math] of order [math]p^n[/math]. A block with defect group [math]P[/math] has inertial index [math]e[/math] a divisor of [math]p-1[/math]. The number of irreducible characters in the block is [math]e+\frac{|P|-1}{e}[/math]. The exceptional vertex has multiplicity [math]\frac{|P|-1}{e}[/math].
The possibile Brauer trees (for [math]P[/math] and [math]e[/math] a divisor of [math]p-1[/math]) are the Brauer trees whose vertex multiplicities add to [math]e+\frac{|P|-1}{e}[/math] where the exceptional vertex multiplicity is [math]\frac{|P|-1}{e}[/math] and non-exceptional vertices are regarded as having multiplicity [math]1[/math].
Source algebra
Introduced by Puig, these are subalgebras of a block [math]B[/math] of a finite group (and more generally for a [math]G[/math]-algebra) not only Morita equivalent to [math]B[/math] but also determining the fusion system. See [Li18c,5.6.12].
Splendid equivalence
May apply to Morita equivalences, stable equivalences and derived equivalences. See 9.7 an 9.8 of [Li18d]. It means roughly equivalences given by (complexes of) trivial source bimodules.
Trivial intersection subgroup
A subgroup [math]H \leq G[/math] such that [math]\forall g \in G \setminus N_G(H)[/math] we have [math]H^g\cap H=1[/math].