Difference between revisions of "M(16,10,1)"
(Created page with "{{blockbox |title = M(16,10,1) - <math>k(C_4 \times C_2 \times C_2)</math> |image = |representative = <math>k(C_4 \times C_2 \times C_2)</math> |defect = <math>C_4 \times C...") |
(No difference)
|
Latest revision as of 08:41, 4 December 2018
M(16,10,1) - [math]k(C_4 \times C_2 \times C_2)[/math]
[[File:|250px]]
Representative: | [math]k(C_4 \times C_2 \times C_2)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 16 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_4 \times C_2 \times C_2)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=(C_4 \times C_2 \times C_2):{\rm Aut}(C_4 \times C_2 \times C_2)[/math] |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(16,10,1), M(16,10,3) (complete) |
[math]p'[/math]-index covered blocks: | M(16,10,1), M(16,10,3)[1] (complete) |
Index [math]p[/math] covering blocks: |
These are nilpotent blocks.
Basic algebra
Quiver: a:<1,1>, b:<1,1>, c:<1,1>
Relations w.r.t. [math]k[/math]: [math]a^4=b^2=c^2=0[/math], [math]ab+ba=ac+ca=bc+cb=0[/math]
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Back to [math]C_4 \times C_2 \times C_2[/math]