Difference between revisions of "SD16"

From Block library
Jump to: navigation, search
Line 26: Line 26:
 
|[[M(16,8,1)]] || <math>kSD_{16}</math> || 1 ||7 ||1 ||<math>1</math> || || || ||1 ||
 
|[[M(16,8,1)]] || <math>kSD_{16}</math> || 1 ||7 ||1 ||<math>1</math> || || || ||1 ||
 
|-
 
|-
|[[M(16,8,2)]] || <math>B_5(kPSU_3(5))</math> || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal A})_1</math>
+
|[[M(16,8,2)]] || <math>B_5(kPSU_3(5))</math> || ? ||8 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal A})_1</math>
 
|-
 
|-
|[[M(16,8,3)]] || || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal A})_2</math>
+
|[[M(16,8,3)]] || <math>B_0(kM_{10})=B_0(k(A_6.2_3))</math> || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal A})_2</math>
 
|-
 
|-
 
|[[M(16,8,4)]] || <math>B_3(k(3.M_{10}))=B_3(k(3.A_6.2_3))</math> || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal B})_1</math>
 
|[[M(16,8,4)]] || <math>B_3(k(3.M_{10}))=B_3(k(3.A_6.2_3))</math> || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal B})_1</math>
 
|-
 
|-
|[[M(16,8,5)]] || || ? ||7 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal B})_2</math>
+
|[[M(16,8,5)]] || <math>B_1(kPSL_3(11))</math> || ? ||8 ||2 ||<math>1</math> || || || ||1 || <math>SD(2 {\cal B})_2</math>
 
|-
 
|-
|[[M(16,8,6)]] || || ? ||7 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal A})_1</math>
+
|[[M(16,8,6)]] || || ? ||8 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal A})_1</math>
 
|-
 
|-
|[[M(16,8,7)]] || || ? ||7 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal B})_1</math>
+
|[[M(16,8,7)]] || || ? ||8 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal B})_1</math>
 
|-
 
|-
|[[M(16,8,8)]] || || ? ||7 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal C})_2</math>
+
|[[M(16,8,8)]] || || ? ||8 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal C})_2</math>
 
|-
 
|-
|[[M(16,8,9)]] || || ? ||7 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal D})</math>
+
|[[M(16,8,9)]] || || ? ||8 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal D})</math>
 
|-
 
|-
|[[M(16,8,10)]] || || ? ||7 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal H})</math>
+
|[[M(16,8,10)]] || || ? ||8 ||3 ||<math>1</math> || || || ||1 || <math>SD(3 {\cal H})</math>
 
|}
 
|}
  
<!-- [[M(8,3,2)]] and [[M(8,3,3)]] are derived equivalent over <math>k</math> by [[References|[Ho97] ]].
+
[[M(16,8,2)]] and [[M(16,8,5)]] are derived equivalent over <math>k</math> by [[References|[Ho97] ]].
  
[[M(8,3,4)]], [[M(8,3,5)]] and [[M(8,3,6)]] are derived equivalent over <math>k</math> by [[References|[Li94b] ]].-->
+
[[M(16,8,3)]] and [[M(16,8,4)]] are derived equivalent over <math>k</math> by [[References|[Ho97] ]].
 +
 
 +
<!--[[M(8,3,4)]], [[M(8,3,5)]] and [[M(8,3,6)]] are derived equivalent over <math>k</math> by [[References|[Li94b] ]].-->

Revision as of 16:55, 14 November 2018

Blocks with defect group [math]SD_{16}[/math]

Under-construction.png

These are examples of tame blocks and were first classified over [math]k[/math] by Erdmann (see [Er88c], [Er90b]). The classification with respect to [math]\mathcal{O}[/math] is still unknown.


Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(16,8,1) [math]kSD_{16}[/math] 1 7 1 [math]1[/math] 1
M(16,8,2) [math]B_5(kPSU_3(5))[/math]  ? 8 2 [math]1[/math] 1 [math]SD(2 {\cal A})_1[/math]
M(16,8,3) [math]B_0(kM_{10})=B_0(k(A_6.2_3))[/math]  ? 7 2 [math]1[/math] 1 [math]SD(2 {\cal A})_2[/math]
M(16,8,4) [math]B_3(k(3.M_{10}))=B_3(k(3.A_6.2_3))[/math]  ? 7 2 [math]1[/math] 1 [math]SD(2 {\cal B})_1[/math]
M(16,8,5) [math]B_1(kPSL_3(11))[/math]  ? 8 2 [math]1[/math] 1 [math]SD(2 {\cal B})_2[/math]
M(16,8,6)  ? 8 3 [math]1[/math] 1 [math]SD(3 {\cal A})_1[/math]
M(16,8,7)  ? 8 3 [math]1[/math] 1 [math]SD(3 {\cal B})_1[/math]
M(16,8,8)  ? 8 3 [math]1[/math] 1 [math]SD(3 {\cal C})_2[/math]
M(16,8,9)  ? 8 3 [math]1[/math] 1 [math]SD(3 {\cal D})[/math]
M(16,8,10)  ? 8 3 [math]1[/math] 1 [math]SD(3 {\cal H})[/math]

M(16,8,2) and M(16,8,5) are derived equivalent over [math]k[/math] by [Ho97] .

M(16,8,3) and M(16,8,4) are derived equivalent over [math]k[/math] by [Ho97] .