Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2: D32)
Line 118: Line 118:
 
|32 || [[C8:C4|4]] || [[C*:C4|<math>C_8:C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|32 || [[C8:C4|4]] || [[C*:C4|<math>C_8:C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[MNA(3,1)|5]] || [[MNA(3,1)|<math>MNA(3,1)</math>]] || || || || ||
+
|32 || [[MNA(3,1)|5]] || [[MNA(3,1)|<math>MNA(3,1)</math>]] || || || || [[References|[Sa11] ]] || Invariants known
 
|-
 
|-
 
|32 || [[MNA(2,1):C2|6]] || [[MNA(3,1):C2|<math>MNA(2,1):C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[MNA(2,1):C2|6]] || [[MNA(3,1):C2|<math>MNA(2,1):C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
Line 126: Line 126:
 
|32 || [[2.MNA(2,1)|8]] || [[2.MNA(2,1)|<math>2.MNA(2,1)</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[2.MNA(2,1)|8]] || [[2.MNA(2,1)|<math>2.MNA(2,1)</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8:C4|9]] || [[D8:C4|<math>D_8:C_4</math>]] || || || || Invariants known by [[References|[Sa14,10.23]]] ||
+
|32 || [[D8:C4|9]] || [[D8:C4|<math>D_8:C_4</math>]] || || || || [[References|[Sa14,10.23]]] || Invariants known
 
|-
 
|-
|32 || [[Q8:C4|10]] || [[Q8:C4|<math>Q_8:C_4</math>]] || || || || Invariants known by [[References|[Sa14,10.25]]] ||
+
|32 || [[Q8:C4|10]] || [[Q8:C4|<math>Q_8:C_4</math>]] || || || || [[References|[Sa14,10.25]]] || Invariants known
 
|-
 
|-
|32 || [[C4wrC2|11]] || [[C4wrC2|<math>C_4 \wr C_2</math>]] || || || || Invariants known by [[References|[Ku80]]] ||
+
|32 || [[C4wrC2|11]] || [[C4wrC2|<math>C_4 \wr C_2</math>]] || || || || [[References|[Ku80]]] || Invariants known
 
|-
 
|-
 
|32 || [[C4:C8|12]] || [[C4:C8|<math>C_4:C_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|32 || [[C4:C8|12]] || [[C4:C8|<math>C_4:C_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
Line 152: Line 152:
 
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  
 
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  
 
|-
 
|-
|32 || [[MNA(2,1)xC2|22]] || [[MNA(2,1)xC2|<math>MNA(2,1) \times C_2</math>]] || || || || Invariants known by [[References|[Sa14,10.25]]] ||
+
|32 || [[MNA(2,1)xC2|22]] || [[MNA(2,1)xC2|<math>MNA(2,1) \times C_2</math>]] || || || || [[References|[Sa14,10.25]]] || Invariants known
 
|-
 
|-
 
|32 || [[(C4:C4)xC2|23]] || [[(C4:C4)xC2|<math>(C_4:C_4) \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[(C4:C4)xC2|23]] || [[(C4:C4)xC2|<math>(C_4:C_4) \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
Line 158: Line 158:
 
|32 || [[SmallGroup(32,24)|24]] || [[SmallGroup(32,24)]]<!--<math>(C_4 \times C_4):C_2=\langle a,b,c \mid a^4 = b^4 = c^2 = e, ab = ba, ac = ca, cb = a^2bc \rangle</math>]]--> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[SmallGroup(32,24)|24]] || [[SmallGroup(32,24)]]<!--<math>(C_4 \times C_4):C_2=\langle a,b,c \mid a^4 = b^4 = c^2 = e, ab = ba, ac = ca, cb = a^2bc \rangle</math>]]--> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8xC4|25]] || [[D8xC4|<math>D_8 \times C_4</math>]] || || || || Invariants known by [[References|[Sa14,9.7]]] ||
+
|32 || [[D8xC4|25]] || [[D8xC4|<math>D_8 \times C_4</math>]] || || || || [[References|[Sa14,9.7]]] ||
|-
+
Invariants known|-
|32 || [[Q8xC4|26]] || [[Q8xC4|<math>Q_8 \times C_4</math>]] || || || || Invariants known by [[References|[Sa14,9.28]]] ||
+
|32 || [[Q8xC4|26]] || [[Q8xC4|<math>Q_8 \times C_4</math>]] || || || || [[References|[Sa14,9.28]]] || Invariants known
 
|-
 
|-
 
|32 || [[SmallGroup(32,27)|27]] || [[SmallGroup(32,27)]]<!--|<math>(C_4 \times C_4):C_2=\langle x,y,z,a,b \mid x^2 = y^2 = z^2 = a^2 = b^2 = e, xy = yx, xz, = zx, yz = zy, aza^{-1} = xz, bzb^{-1} = yz, ax = xa, ay = ya, bx = xb, by = yb \rangle</math>]]--> || || || || ||
 
|32 || [[SmallGroup(32,27)|27]] || [[SmallGroup(32,27)]]<!--|<math>(C_4 \times C_4):C_2=\langle x,y,z,a,b \mid x^2 = y^2 = z^2 = a^2 = b^2 = e, xy = yx, xz, = zx, yz = zy, aza^{-1} = xz, bzb^{-1} = yz, ax = xa, ay = ya, bx = xb, by = yb \rangle</math>]]--> || || || || ||
 
|-
 
|-
|32 || [[SmallGroup(32,28)|28]] || [[SmallGroup(32,28)]] || || || || Invariants known by [[References|[Sa14,13.11]]] ||
+
|32 || [[SmallGroup(32,28)|28]] || [[SmallGroup(32,28)]] || || || || [[References|[Sa14,13.11]]] || Invariants known
 
|-
 
|-
|32 || [[SmallGroup(32,29)|29]] || [[SmallGroup(32,29)]] || || || || Invariants known by [[References|[Sa14,13.11]]] ||
+
|32 || [[SmallGroup(32,29)|29]] || [[SmallGroup(32,29)]] || || || || [[References|[Sa14,13.11]]] || Invariants known
 
|-
 
|-
 
|32 || [[SmallGroup(32,30)|30]] || [[SmallGroup(32,30)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[SmallGroup(32,30)|30]] || [[SmallGroup(32,30)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
Line 174: Line 174:
 
|32 || [[SmallGroup(32,32)|32]] || [[SmallGroup(32,32)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[SmallGroup(32,32)|32]] || [[SmallGroup(32,32)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,33)|33]] || [[SmallGroup(32,33)]] || || || || Invariants partly known by [[References|[Sa14,13.12]]] ||
+
|32 || [[SmallGroup(32,33)|33]] || [[SmallGroup(32,33)]] || || || || [[References|[Sa14,13.12]]] || Invariants partly known
 
|-
 
|-
|32 || [[SmallGroup(32,34)|34]] || [[SmallGroup(32,34)]] || || || || Invariants partly known by [[References|[Sa14,13.12]]] ||
+
|32 || [[SmallGroup(32,34)|34]] || [[SmallGroup(32,34)]] || || || || [[References|[Sa14,13.12]]] || Invariants partly known
 
|-
 
|-
 
|32 || [[C4:Q8|35]] || [[C4:Q8|<math>C_4:Q_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[C4:Q8|35]] || [[C4:Q8|<math>C_4:Q_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
Line 184: Line 184:
 
|32 || [[M16xC2|37]] || [[M16xC2|<math>M_{16} \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|32 || [[M16xC2|37]] || [[M16xC2|<math>M_{16} \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8*C8|38]] || [[D8*C8|<math>D_8*C_8</math>]] || || || || Invariants known by [[References|[Sa14,9.18]]] ||
+
|32 || [[D8*C8|38]] || [[D8*C8|<math>D_8*C_8</math>]] || || || || [[References|[Sa14,9.18]]] || Invariants known
 
|-
 
|-
|32 || [[D16xC2|39]] || [[D16xC2|<math>D_{16} \times C_2</math>]] || || || || Invariants known by [[References|[Sa14,9.7]]] ||
+
|32 || [[D16xC2|39]] || [[D16xC2|<math>D_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.7]]] || Invariants known
 
|-
 
|-
|32 || [[SD16xC2|40]] || [[SD16xC2|<math>SD_{16} \times C_2</math>]] || || || || Invariants known by [[References|[Sa14,9.37]]] ||
+
|32 || [[SD16xC2|40]] || [[SD16xC2|<math>SD_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.37]]] || Invariants known
 
|-
 
|-
|32 || [[Q16xC2|41]] || [[Q16xC2|<math>Q_{16} \times C_2</math>]] || || || || Invariants known by [[References|[Sa14,9.28]]] ||
+
|32 || [[Q16xC2|41]] || [[Q16xC2|<math>Q_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.28]]] || Invariants known
 
|-
 
|-
|32 || [[D16*C4|42]] || [[D16*C4|<math>D_{16}*C_4</math>]] || || || || Invariants known by [[References|[Sa14,9.18]]] ||
+
|32 || [[D16*C4|42]] || [[D16*C4|<math>D_{16}*C_4</math>]] || || || || [[References|[Sa14,9.18]]] || Invariants known
 
|-
 
|-
 
|32 || [[SmallGroup(32,43)|43]] || [[SmallGroup(32,43)]] || || || || ||
 
|32 || [[SmallGroup(32,43)|43]] || [[SmallGroup(32,43)]] || || || || ||
Line 198: Line 198:
 
|32 || [[SmallGroup(32,44)|44]] || [[SmallGroup(32,44)]] || || || || ||
 
|32 || [[SmallGroup(32,44)|44]] || [[SmallGroup(32,44)]] || || || || ||
 
|-
 
|-
|32 || [[C4xC2xC2xC2|45]] || [[C4xC2xC2xC2|<math>C_4 \times C_2 \times C_2 \times C_2</math>]] || || || || Invariants known by [[References|[Sa14, 13.9]]] ||
+
|32 || [[C4xC2xC2xC2|45]] || [[C4xC2xC2xC2|<math>C_4 \times C_2 \times C_2 \times C_2</math>]] || || || || [[References|[Sa14, 13.9]]] || Invariants known
 
|-
 
|-
 
|32 || [[D8xC2xC2|46]] || [[D8xC2xC2|<math>D_8 \times C_2 \times C_2</math>]] || || || || ||
 
|32 || [[D8xC2xC2|46]] || [[D8xC2xC2|<math>D_8 \times C_2 \times C_2</math>]] || || || || ||
Line 206: Line 206:
 
|32 || [[D8*C4xC2|48]] || [[D8*C4xC2|<math>(D_8*C_4) \times C_2</math>]] || || || || ||
 
|32 || [[D8*C4xC2|48]] || [[D8*C4xC2|<math>(D_8*C_4) \times C_2</math>]] || || || || ||
 
|-
 
|-
|32 || [[D8*D8|49]] || [[D8*D8|<math>D8*D8</math>]] || || || || Invariants partly known by [[References|[Sa13c]]] ||
+
|32 || [[D8*D8|49]] || [[D8*D8|<math>D8*D8</math>]] || || || || [[References|[Sa13c]]] || Invariants partly known
 
|-
 
|-
|32 || [[D8*Q8|50]] || [[D8*Q8|<math>D8*Q8</math>]] || || || || Invariants partly known by [[References|[Sa13c]]] ||
+
|32 || [[D8*Q8|50]] || [[D8*Q8|<math>D8*Q8</math>]] || || || || [[References|[Sa13c]]] || Invariants partly known
 
|-
 
|-
 
|32 || [[(C2)^5|51]] || [[(C2)^5|<math>(C_2)^5</math>]] || || || || ||
 
|32 || [[(C2)^5|51]] || [[(C2)^5|<math>(C_2)^5</math>]] || || || || ||

Revision as of 21:23, 4 November 2018

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks of defect zero

Blocks for [math] p=2 [/math]

The following takes as its starting point Table 13.1 of Sambale's book [Sa14].

Under-construction.png

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]