Difference between revisions of "Generic classifications by p-group class"
(→Abelian 2-groups with 2-rank at most three) |
(→Abelian 2-groups with 2-rank at most three) |
||
Line 21: | Line 21: | ||
[[Image:under-construction.png|50px|left]] | [[Image:under-construction.png|50px|left]] | ||
− | These have been classified in [[References|[WZZ18]]] and [[References|[EL18a]]] with respect to <math>\mathcal{O}</math>. | + | These have been classified in [[References|[WZZ18]]] and [[References|[EL18a]]] with respect to <math>\mathcal{O}</math>. The derived equivalences classes with respect to <math>\mathcal{O}</math> are known. |
Let <math>l,m,n \geq 1</math> be distinct with <math>l,m \neq 1</math> | Let <math>l,m,n \geq 1</math> be distinct with <math>l,m \neq 1</math> | ||
Line 29: | Line 29: | ||
|- | |- | ||
! scope="col"| <math>D</math> | ! scope="col"| <math>D</math> | ||
− | ! scope="col"| | + | ! scope="col"| # <math>\mathcal{O}</math>-)Morita classes |
− | ! scope="col"| | + | ! scope="col"| # <math>\mathcal{O}</math>-Derived equiv classes |
− | ! scope="col"| | + | ! scope="col"| Always endopermutation source Morita equivalent? |
! scope="col"| References | ! scope="col"| References | ||
! scope="col"| Notes | ! scope="col"| Notes | ||
|- | |- | ||
− | |<math>C_{2^n}</math> || 1 | + | |[[C(2^n)|<math>C_{2^n}</math>]] || 1 || 1 || Yes || || |
|- | |- | ||
− | |<math>C_2 \times C_2</math> || 3 | + | |[[C2xC2|<math>C_2 \times C_2</math>]] || 3 || 2 || Yes || || |
|- | |- | ||
− | |<math>C_{2^m} \times C_{2^m}</math> || 2 | + | |[[C(2^m)xC(2^m)|<math>C_{2^m} \times C_{2^m}</math>]] || 2 || 2 || Yes || || |
|- | |- | ||
− | |<math>C_{2^m} \times C_{2^n}</math> || 1 | + | |[[C(2^m)xC(2^n)|<math>C_{2^m} \times C_{2^n}</math>]] || 1 || 1 || Yes || || |
|- | |- | ||
− | |<math>C_2 \times C_2 \times C_2</math> || 8 | + | |[[C2xC2xC2|<math>C_2 \times C_2 \times C_2</math>]] || 8 || 4 || || || |
|- | |- | ||
− | |<math>C_{2^m} \times C_{2^m} \times C_{2^m}</math> || 4 | + | |[[C(2^m)xC(2^m)xC(2^m)|<math>C_{2^m} \times C_{2^m} \times C_{2^m}</math>]] || 4 || 4 || Yes || || |
|- | |- | ||
− | |<math>C_{2^m} \times C_2 \times C_2</math> || 3 | + | |[[C(2^m)xC2xC2|<math>C_{2^m} \times C_2 \times C_2</math>]] || 3 || 2 || || || |
|- | |- | ||
− | |<math>C_{2^m} \times C_{2^m} \times C_{2^n}</math> || 2 | + | |[[C(2^m)xC(2^m)xC(2^n)|<math>C_{2^m} \times C_{2^m} \times C_{2^n}</math>]] || 2 || 2 || || || |
|- | |- | ||
− | |<math>C_{2^l} \times C_{2^m} \times C_{2^n}</math> || 1 | + | |[[C(2^l)xC(2^m)xC(2^n)|<math>C_{2^l} \times C_{2^m} \times C_{2^n}</math>]] || 1 || 1 || Yes || || |
|} | |} | ||
Revision as of 20:55, 16 October 2018
This page will contain results for generic classes of p-groups. It is very much under construction so the list below is not complete.
Contents
Cyclic p-groups
Click here for background on blocks with cyclic defect groups.
Morita equivalence classes are labelled by Brauer trees, but it is at present an open problem as to which Brauer trees are realised by blocks of finite groups. Each k-Morita equivalence class corresponds to an unique [math]\mathcal{O}[/math]-Morita equivalence class.
For [math]p=2,3[/math] every appropriate Brauer tree is realised by a block and we can give generic descriptions.
[math]2[/math]-blocks with cyclic defect groups
[math]3[/math]-blocks with cyclic defect groups
Tame blocks
Erdmann classified algebras which are candidates for basic algebras of tame blocks, i.e., those with dihedral, semidihedral or generalised quaternion defect groups (see [Er90] ) and in the cases of dihedral and semihedral defect groups determined which are realised by blocks of finite groups. In the case of generalised quaternion groups, the case of blocks with two simple modules is still open. These classifications only hold with respect to the field k at present.
Abelian 2-groups with 2-rank at most three
These have been classified in [WZZ18] and [EL18a] with respect to [math]\mathcal{O}[/math]. The derived equivalences classes with respect to [math]\mathcal{O}[/math] are known.
Let [math]l,m,n \geq 1[/math] be distinct with [math]l,m \neq 1[/math]
[math]rk_2(D) \leq 3[/math] | |||||
[math]D[/math] | # [math]\mathcal{O}[/math]-)Morita classes | # [math]\mathcal{O}[/math]-Derived equiv classes | Always endopermutation source Morita equivalent? | References | Notes |
---|---|---|---|---|---|
[math]C_{2^n}[/math] | 1 | 1 | Yes | ||
[math]C_2 \times C_2[/math] | 3 | 2 | Yes | ||
[math]C_{2^m} \times C_{2^m}[/math] | 2 | 2 | Yes | ||
[math]C_{2^m} \times C_{2^n}[/math] | 1 | 1 | Yes | ||
[math]C_2 \times C_2 \times C_2[/math] | 8 | 4 | |||
[math]C_{2^m} \times C_{2^m} \times C_{2^m}[/math] | 4 | 4 | Yes | ||
[math]C_{2^m} \times C_2 \times C_2[/math] | 3 | 2 | |||
[math]C_{2^m} \times C_{2^m} \times C_{2^n}[/math] | 2 | 2 | |||
[math]C_{2^l} \times C_{2^m} \times C_{2^n}[/math] | 1 | 1 | Yes |
Abelian 2-groups
Donovan's conjecture holds for 2-blocks with abelian defect groups. Some generic classification results are known for certain inertial quotients. These will be detailed here.
Minimal nonabelian [math]2[/math]-groups
Blocks with defect groups which are minimal nonabelian [math]2[/math]-groups of the form [math]P=\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] are classified in [EKS12]. There are two [math]\mathcal{O}[/math]-Morita equivalence classes, with representatives [math]\mathcal{O}P[/math] and [math]\mathcal{O}(P:C_3)[/math].