Difference between revisions of "Status of Donovan's conjecture"
Line 18: | Line 18: | ||
|- | |- | ||
|Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] || | |Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] || | ||
− | |||
− | |||
|- | |- | ||
|<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG | |<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG | ||
Line 35: | Line 33: | ||
|Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math> | |Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math> | ||
|- | |- | ||
− | |Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] || | + | |Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] || |
+ | |- | ||
+ | |Metacyclic <math>2</math>-groups of nonmaximal class || <math>\mathcal{O}</math> || No || [[References|[Sa12b]]] || All blocks nilpotent | ||
|} | |} |
Revision as of 21:51, 8 October 2018
In this page we list cases where Donovan's conjecture is known to hold.
Donovan's conjecture by [math]p[/math]-group
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].
[math]p[/math]-groups | Donovan's conjecture | Puig's conjecture | References | Notes |
---|---|---|---|---|
Cyclic [math]p[/math]-groups | [math]\mathcal{O}[/math] | Yes | [Li96] | |
[math]C_2 \times C_2[/math] | [math]\mathcal{O}[/math] | Yes | [CEKL11] | Donovan's conjecture without CFSG, Puig using CFSG |
Abelian [math]2[/math]-groups | [math]\mathcal{O}[/math] | No | [EEL18] | |
Abelian [math]3[/math]-groups | No | No | [Ko03] | Puig's conjecture known for principal blocks |
Dihedral [math]2[/math]-groups | [math]k[/math] | No | [Er87] | |
Semidihedral [math]2[/math]-groups | [math]k[/math] | No | [Er88c], [Er90b] | |
[math]Q_8[/math] | [math]\mathcal{O}[/math] | No | [Er88a], [Er88b], [HKL07], [Ei16] | |
Generalised quaternion [math]2[/math]-groups | No | No | [Er88a], [Er88b] | Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math] |
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] | [math]\mathcal{O}[/math] | No | [EKS12] | |
Metacyclic [math]2[/math]-groups of nonmaximal class | [math]\mathcal{O}[/math] | No | [Sa12b] | All blocks nilpotent |