Difference between revisions of "M(8,3,6)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(8,3,6) - <math>B_0(kPSL_2(7))</math> |image = M(4,2,3)quiver.png |representative = <math>B_0(kPSL_2(7))</math> |defect = <math>D_8</math> |inert...")
 
Line 46: Line 46:
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==
  
<!-- Labelling the simple <math>B</math>-modules by <math>S_1, S_2, S_3</math>, the projective indecomposable modules have Loewy structure as follows:
+
Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows:
  
 
<math>\begin{array}{ccc}
 
<math>\begin{array}{ccc}
 
   \begin{array}{ccc}
 
   \begin{array}{ccc}
     & S_1 & \\
+
     & 1 & \\
       S_2 & & S_3 \\
+
       2 & & 3 \\
     & S_1 & \\
+
     & 1 & \\
 
   \end{array},
 
   \end{array},
 
&
 
&
 
   \begin{array}{ccc}
 
   \begin{array}{ccc}
     & S_2 & \\
+
     & 2 & \\
       S_1 & & S_3 \\
+
       1 & \oplus & \begin{array}{c} 3 \\ 2 \\ 3 \\ \end{array} \\
     & S_2 & \\
+
     & 2 & \\
 
   \end{array},   
 
   \end{array},   
 
&  
 
&  
 
   \begin{array}{ccc}
 
   \begin{array}{ccc}
     & S_3 & \\
+
     & 3 & \\
       S_1 & & S_2 \\
+
       1 & \oplus & \begin{array}{c} 2 \\ 3 \\ 2 \\ \end{array} \\
     & S_3 & \\
+
     & 3 & \\
 
   \end{array}  
 
   \end{array}  
 
\end{array}
 
\end{array}
</math>-->
+
</math>
  
 
== Irreducible characters ==
 
== Irreducible characters ==
  
<!--All irreducible characters have height zero.
+
<math>k_0(B)=4, \ k_1(B)=1</math>
  
  
[[C2xC2|Back to <math>C_2 \times C_2</math>]]
+
[[D8|Back to <math>D_8</math>]]
  
[[Category: Morita equivalence classes|4,2,3]]
+
[[Category: Morita equivalence classes|8,3,6]]
[[Category: Blocks with defect group C2xC2]]
+
[[Category: Blocks with defect group D8]]
[[Category: Tame blocks|4,2,3]]-->
+
[[Category: Tame blocks|8,3,6]]

Revision as of 17:31, 4 October 2018

M(8,3,6) - [math]B_0(kPSL_2(7))[/math]
M(4,2,3)quiver.png
Representative: [math]B_0(kPSL_2(7))[/math]
Defect groups: [math]D_8[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 5
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? No
[math]\mathcal{O}[/math]-Morita classes:
Decomposition matrices: [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,3,4), M(8,3,5)
[math]\mathcal{O}[/math]-derived equiv. classes known? No
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3>

Relations w.r.t. [math]k[/math]: [math]ab=bc=ca=0[/math], [math]df=fe=ed=0[/math], [math]ad=fc[/math], [math](be)^2=da[/math], [math]cf=(eb)^2[/math]

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{ccc} & 1 & \\ 2 & & 3 \\ & 1 & \\ \end{array}, & \begin{array}{ccc} & 2 & \\ 1 & \oplus & \begin{array}{c} 3 \\ 2 \\ 3 \\ \end{array} \\ & 2 & \\ \end{array}, & \begin{array}{ccc} & 3 & \\ 1 & \oplus & \begin{array}{c} 2 \\ 3 \\ 2 \\ \end{array} \\ & 3 & \\ \end{array} \end{array} [/math]

Irreducible characters

[math]k_0(B)=4, \ k_1(B)=1[/math]


Back to [math]D_8[/math]