Difference between revisions of "M(8,3,3)"
(Created page with "{{blockbox |title = M(8,3,3) - <math>kS_4</math> |image = M(8,3,3)quiver.png |representative = <math>kS_4</math> |defect = <math>D_8</math> |inertialquotients = <math...") |
(No difference)
|
Revision as of 14:33, 4 October 2018
Representative: | [math]kS_4[/math] |
---|---|
Defect groups: | [math]D_8[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 2 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cc} 4 & 2 \\ 2 & 3 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | No |
[math]\mathcal{O}[/math]-Morita classes: | |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,3,2) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are tame blocks, and appear in the family [math]D(2 {\cal B})[/math] in Erdmann's classification (see [Er87] ). Derived equivalences over [math]k[/math] are established in [Ho97].
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,2>, c:<2,1>, d:<2,2>,
Relations w.r.t. [math]k[/math]: [math]a^2=bd=dc=cb=0[/math], [math]abc=bca[/math], [math]cab=d^2[/math]
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1, 2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{ccc} & 1 & \\ \begin{array}{c} 1 \\ 2 \\ \end{array} & \oplus & \begin{array}{c} 2 \\ 1 \\ \end{array} \\ & 1 & \\ \end{array}, & \begin{array}{ccc} & 2 & \\ \begin{array}{c} 1 \\ 1 \\ \end{array} & \oplus & \begin{array}{c} 2 \\ \end{array} \\ & 2 & \\ \end{array} \\ \end{array} [/math]
Irreducible characters
[math]k_0(B)=4, k_1(B)=1[/math]