Difference between revisions of "M(2,1,1)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(2,1,1) - <math>kC_2</math> |image = |representative = <math>kC_2</math> |defect = <math>kC_2</math> |inertialquotients = <math>1</math> |k(B) = 2 |l(B...")
(No difference)

Revision as of 11:25, 30 August 2018

M(2,1,1) - [math]kC_2[/math]
[[File:|250px]]
Representative: [math]kC_2[/math]
Defect groups: [math]kC_2[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 2
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_2[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=C_2[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_2[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: {{{coveringblocks}}}
[math]p'[/math]-index covered blocks: {{{coveredblocks}}}
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

These are frequently occuring nilpotent blocks.

Basic algebra

Quiver: a:<1,1>

Relations w.r.t. [math]k[/math]: a^2=0

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

[math]B[/math] and [math]b[/math] must be Morita equivalent.

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} S_1 \\ S_1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.