Difference between revisions of "M(2,1,1)"
(Created page with "{{blockbox |title = M(2,1,1) - <math>kC_2</math> |image = |representative = <math>kC_2</math> |defect = <math>kC_2</math> |inertialquotients = <math>1</math> |k(B) = 2 |l(B...") |
(No difference)
|
Revision as of 11:25, 30 August 2018
M(2,1,1) - [math]kC_2[/math]
[[File:|250px]]
Representative: | [math]kC_2[/math] |
---|---|
Defect groups: | [math]kC_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 2 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 3 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} C_2[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=C_2[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]kC_2[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | {{{coveringblocks}}} |
[math]p'[/math]-index covered blocks: | {{{coveredblocks}}} |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are frequently occuring nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>
Relations w.r.t. [math]k[/math]: a^2=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
[math]B[/math] and [math]b[/math] must be Morita equivalent.
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} S_1 \\ S_1 \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.