Difference between revisions of "C3xC3"
m  | 
				 (Some Picard groups)  | 
				||
| Line 5: | Line 5: | ||
[[Image:under-construction.png|50px|left]]  | [[Image:under-construction.png|50px|left]]  | ||
| − | Source algebra equivalence classes of principal blocks with this defect group have been classified by Koshitani in [[References|[Ko03]]] using the [[Glossary#CFSG|CFSG]]. This accounts for classes [[M(9,2,1)]] to [[M(9,2,22)]]. Note that it does not follow from the results in [[References|[Ko03]]] that there is a unique <math>\mathcal{O}</math>-Morita equivalence class for each of these <math>k</math>-Morita equivalence classes as they may also contain non-principal blocks.  | + | Source algebra equivalence classes of principal blocks with this defect group have been classified by Koshitani in [[References|[Ko03]]] using the [[Glossary#CFSG|CFSG]]. This accounts for classes [[M(9,2,1)]] to [[M(9,2,22)]]. Note that it does not follow from the results in [[References#K|[Ko03]]] that there is a unique <math>\mathcal{O}</math>-Morita equivalence class for each of these <math>k</math>-Morita equivalence classes as they may also contain non-principal blocks. Some Picard groups calculated in [[References#M|[Mar]]].  | 
The numerical invariants of arbitrary blocks with defect group <math>C_3 \times C_3</math> were calculated for all [[Glossary#Inertial quotient|inertial quotients]] except <math>C_8</math> and <math>Q_8</math> by Kiyota in [[References|[Ki84]]], and these cases remain an open problem. Kiyota's calculations do not involve the [[Glossary#CFSG|CFSG]].  | The numerical invariants of arbitrary blocks with defect group <math>C_3 \times C_3</math> were calculated for all [[Glossary#Inertial quotient|inertial quotients]] except <math>C_8</math> and <math>Q_8</math> by Kiyota in [[References|[Ki84]]], and these cases remain an open problem. Kiyota's calculations do not involve the [[Glossary#CFSG|CFSG]].  | ||
| Line 28: | Line 28: | ||
|[[M(9,2,1)]] || <math>k(C_3 \times C_3)</math> || 1 ||9 ||1 ||<math>1</math> || <math>(C_3 \times C_3):GL_2(3)</math> || ||1 ||1 ||    | |[[M(9,2,1)]] || <math>k(C_3 \times C_3)</math> || 1 ||9 ||1 ||<math>1</math> || <math>(C_3 \times C_3):GL_2(3)</math> || ||1 ||1 ||    | ||
|-  | |-  | ||
| − | |[[M(9,2,2)]] ||  <math>k(S_3 \times C_3)</math> ||  ||9 ||2 ||<math>C_2</math> || || ||1 ||1 ||  | + | |[[M(9,2,2)]] ||  <math>k(S_3 \times C_3)</math> ||  ||9 ||2 ||<math>C_2</math> || <math>C_2 \times S_3</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,3)]] ||  <math>k(C_3 \times C_3):C_2</math> ||  ||6 ||2 ||<math>C_2</math> (power of Singer cycle) || || ||1 ||1 || SmallGroup(18,4)  | + | |[[M(9,2,3)]] ||  <math>k(C_3 \times C_3):C_2</math> ||  ||6 ||2 ||<math>C_2</math> (power of Singer cycle) || <math>C_8</math> || ||1 ||1 || SmallGroup(18,4)  | 
|-  | |-  | ||
| − | |[[M(9,2,4)]] ||  <math>k(S_3 \times S_3)</math> ||  ||9 ||4 ||<math>C_2 \times C_2</math> || || ||1 ||1 ||  | + | |[[M(9,2,4)]] ||  <math>k(S_3 \times S_3)</math> ||  ||9 ||4 ||<math>C_2 \times C_2</math> || <math>D_8</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,5)]] ||  <math>k(C_3 \times C_3):C_4</math> ||  ||6 ||4 ||<math>C_4</math> || || ||1 ||1 ||  | + | |[[M(9,2,5)]] ||  <math>k(C_3 \times C_3):C_4</math> ||  ||6 ||4 ||<math>C_4</math> || <math>C_2 \times D_8</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,6)]] ||  <math>B_0(kA_6)</math> ||  ||6 ||4 ||<math>C_4</math> || || ||1 ||1 ||  | + | |[[M(9,2,6)]] ||  <math>B_0(kA_6)</math> ||  ||6 ||4 ||<math>C_4</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,7)]] ||  <math>B_0(kA_7)</math> ||  ||6 ||4 ||<math>C_4</math> || || ||1 ||1 ||  | + | |[[M(9,2,7)]] ||  <math>B_0(kA_7)</math> ||  ||6 ||4 ||<math>C_4</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,8)]] ||  <math>k(C_3 \times C_3):C_8</math> ||  ||9 ||8 ||<math>C_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,8)]] ||  <math>k(C_3 \times C_3):C_8</math> ||  ||9 ||8 ||<math>C_8</math> || <math>S_4</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,9)]] ||  <math>B_0(kPGL_2(9))</math> ||  ||9 ||8 ||<math>C_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,9)]] ||  <math>B_0(kPGL_2(9))</math> ||  ||9 ||8 ||<math>C_8</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,10)]] ||  <math>k(C_3 \times C_3):D_8</math> ||  ||9 ||5 ||<math>D_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,10)]] ||  <math>k(C_3 \times C_3):D_8</math> ||  ||9 ||5 ||<math>D_8</math> || <math>D_8</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,11)]] ||  <math>B_0(kA_8)</math> ||  ||9 ||5 ||<math>D_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,11)]] ||  <math>B_0(kA_8)</math> ||  ||9 ||5 ||<math>D_8</math> || <math>C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,12)]] ||  <math>B_0(S_6)</math> ||  ||9 ||5 ||<math>D_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,12)]] ||  <math>B_0(S_6)</math> ||  ||9 ||5 ||<math>D_8</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,13)]] ||  <math>B_0(S_7)</math> ||  ||9 ||5 ||<math>D_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,13)]] ||  <math>B_0(S_7)</math> ||  ||9 ||5 ||<math>D_8</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,14)]] ||  <math>k(C_3 \times C_3):Q_8</math> ||  ||6 ||5 ||<math>Q_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,14)]] ||  <math>k(C_3 \times C_3):Q_8</math> ||  ||6 ||5 ||<math>Q_8</math> || <math>S_4</math> || ||1 ||1 ||  | 
|-  | |-  | ||
| − | |[[M(9,2,15)]] ||  <math>B_0(kM_{22})</math> ||  ||6 ||5 ||<math>Q_8</math> || || ||1 ||1 ||  | + | |[[M(9,2,15)]] ||  <math>B_0(kM_{22})</math> ||  ||6 ||5 || <math>Q_8</math> || <math>C_2 \times C_2</math> || ||1 ||1 || Also <math>M_{10}</math>  | 
|-  | |-  | ||
|[[M(9,2,16)]] ||  <math>B_0(kPSL_3(4))</math> ||  ||6 ||5 ||<math>Q_8</math> || || ||1 ||1 ||  | |[[M(9,2,16)]] ||  <math>B_0(kPSL_3(4))</math> ||  ||6 ||5 ||<math>Q_8</math> || || ||1 ||1 ||  | ||
|-  | |-  | ||
| − | |[[M(9,2,17)]] ||  <math>k(C_3 \times C_3):SD_{16}</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | + | |[[M(9,2,17)]] ||  <math>k(C_3 \times C_3):SD_{16}</math> ||  ||9 ||7 ||<math>SD_{16}</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
|[[M(9,2,18)]] ||  <math>B_0(kM_{11})</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | |[[M(9,2,18)]] ||  <math>B_0(kM_{11})</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | ||
| Line 64: | Line 64: | ||
|[[M(9,2,19)]] ||  <math>B_0(kHS)</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | |[[M(9,2,19)]] ||  <math>B_0(kHS)</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | ||
|-  | |-  | ||
| − | |[[M(9,2,20)]] ||  <math>B_0(kM_{23})</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | + | |[[M(9,2,20)]] ||  <math>B_0(kM_{23})</math> ||  ||9 ||7 ||<math>SD_{16}</math> || <math>1</math> || ||1 ||1 ||  | 
|-  | |-  | ||
|[[M(9,2,21)]] ||  <math>B_0(kPSL_3(4).2_3)</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  Extension by graph automorphism  | |[[M(9,2,21)]] ||  <math>B_0(kPSL_3(4).2_3)</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  Extension by graph automorphism  | ||
|-  | |-  | ||
| − | |[[M(9,2,22)]] ||  <math>B_0(k{\rm Aut}(S_6))</math> ||  ||9 ||7 ||<math>SD_{16}</math> || || ||1 ||1 ||  | + | |[[M(9,2,22)]] ||  <math>B_0(k{\rm Aut}(S_6))</math> ||  ||9 ||7 ||<math>SD_{16}</math> || <math>C_2 \times C_2</math> || ||1 ||1 ||  | 
|-  | |-  | ||
|[[M(9,2,23)]] || Faithful block of <math>k((C_3 \times C_3):Q_8)</math>, in which <math>Z(Q_8)</math> acts trivially ||  || 6 || 1 || <math>C_2 \times C_2</math> || || || 1 || 1 || SmallGroup(72,24)  | |[[M(9,2,23)]] || Faithful block of <math>k((C_3 \times C_3):Q_8)</math>, in which <math>Z(Q_8)</math> acts trivially ||  || 6 || 1 || <math>C_2 \times C_2</math> || || || 1 || 1 || SmallGroup(72,24)  | ||
Latest revision as of 09:45, 24 May 2022
Blocks with defect group [math]C_3 \times C_3[/math]
Source algebra equivalence classes of principal blocks with this defect group have been classified by Koshitani in [Ko03] using the CFSG. This accounts for classes M(9,2,1) to M(9,2,22). Note that it does not follow from the results in [Ko03] that there is a unique [math]\mathcal{O}[/math]-Morita equivalence class for each of these [math]k[/math]-Morita equivalence classes as they may also contain non-principal blocks. Some Picard groups calculated in [Mar].
The numerical invariants of arbitrary blocks with defect group [math]C_3 \times C_3[/math] were calculated for all inertial quotients except [math]C_8[/math] and [math]Q_8[/math] by Kiyota in [Ki84], and these cases remain an open problem. Kiyota's calculations do not involve the CFSG.
CLASSIFICATION INCOMPLETE
| Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes | 
|---|---|---|---|---|---|---|---|---|---|---|
| M(9,2,1) | [math]k(C_3 \times C_3)[/math] | 1 | 9 | 1 | [math]1[/math] | [math](C_3 \times C_3):GL_2(3)[/math] | 1 | 1 | ||
| M(9,2,2) | [math]k(S_3 \times C_3)[/math] | 9 | 2 | [math]C_2[/math] | [math]C_2 \times S_3[/math] | 1 | 1 | |||
| M(9,2,3) | [math]k(C_3 \times C_3):C_2[/math] | 6 | 2 | [math]C_2[/math] (power of Singer cycle) | [math]C_8[/math] | 1 | 1 | SmallGroup(18,4) | ||
| M(9,2,4) | [math]k(S_3 \times S_3)[/math] | 9 | 4 | [math]C_2 \times C_2[/math] | [math]D_8[/math] | 1 | 1 | |||
| M(9,2,5) | [math]k(C_3 \times C_3):C_4[/math] | 6 | 4 | [math]C_4[/math] | [math]C_2 \times D_8[/math] | 1 | 1 | |||
| M(9,2,6) | [math]B_0(kA_6)[/math] | 6 | 4 | [math]C_4[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,7) | [math]B_0(kA_7)[/math] | 6 | 4 | [math]C_4[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,8) | [math]k(C_3 \times C_3):C_8[/math] | 9 | 8 | [math]C_8[/math] | [math]S_4[/math] | 1 | 1 | |||
| M(9,2,9) | [math]B_0(kPGL_2(9))[/math] | 9 | 8 | [math]C_8[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,10) | [math]k(C_3 \times C_3):D_8[/math] | 9 | 5 | [math]D_8[/math] | [math]D_8[/math] | 1 | 1 | |||
| M(9,2,11) | [math]B_0(kA_8)[/math] | 9 | 5 | [math]D_8[/math] | [math]C_2[/math] | 1 | 1 | |||
| M(9,2,12) | [math]B_0(S_6)[/math] | 9 | 5 | [math]D_8[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,13) | [math]B_0(S_7)[/math] | 9 | 5 | [math]D_8[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,14) | [math]k(C_3 \times C_3):Q_8[/math] | 6 | 5 | [math]Q_8[/math] | [math]S_4[/math] | 1 | 1 | |||
| M(9,2,15) | [math]B_0(kM_{22})[/math] | 6 | 5 | [math]Q_8[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | Also [math]M_{10}[/math] | ||
| M(9,2,16) | [math]B_0(kPSL_3(4))[/math] | 6 | 5 | [math]Q_8[/math] | 1 | 1 | ||||
| M(9,2,17) | [math]k(C_3 \times C_3):SD_{16}[/math] | 9 | 7 | [math]SD_{16}[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,18) | [math]B_0(kM_{11})[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | ||||
| M(9,2,19) | [math]B_0(kHS)[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | ||||
| M(9,2,20) | [math]B_0(kM_{23})[/math] | 9 | 7 | [math]SD_{16}[/math] | [math]1[/math] | 1 | 1 | |||
| M(9,2,21) | [math]B_0(kPSL_3(4).2_3)[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | Extension by graph automorphism | |||
| M(9,2,22) | [math]B_0(k{\rm Aut}(S_6))[/math] | 9 | 7 | [math]SD_{16}[/math] | [math]C_2 \times C_2[/math] | 1 | 1 | |||
| M(9,2,23) | Faithful block of [math]k((C_3 \times C_3):Q_8)[/math], in which [math]Z(Q_8)[/math] acts trivially | 6 | 1 | [math]C_2 \times C_2[/math] | 1 | 1 | SmallGroup(72,24) | |||
| M(9,2,24) | Faithful block of [math]k((C_3 \times C_3):SD_{16})[/math], in which [math]Z(SD_{16})[/math] acts trivially | 6 | 2 | [math]D_8[/math] | 1 | 1 | ||||
| M(9,2,25) | [math]B_{10}(k(4.M_{22}))[/math] | 6 | 5 | [math]Q_8[/math] | 1 | 1 | ||||
| M(9,2,26) | [math]B_{7}(k(2.HS))[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | ||||
| M(9,2,27) | [math]B_{2}(k(HS))[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | ||||
| [math]B_3(kCo_1)[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_6(kJ_4)[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_2(kFi_{24}')[/math] | 6 | 4 | [math]C_4[/math] | 1 | 1 | |||||
| Block of [math]kFi_{24}'.2[/math] covering [math]B_2(kFi_{24}')[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_3(k(HS.2))[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_{12}(k(2.HS.2))[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | |||||
| [math]B_6(k(2.M_{22}))[/math] | 6 | 5 | 1 | 1 | ||||||
| [math]B_9(k(2.M_{22}.2))[/math] | 9 | 7 | [math]SD_{16}[/math] | 1 | 1 | |||||
| [math]B_6(kB)[/math] | 9 | 5 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_2(kB)[/math] | 9 | 7 | [math]D_8[/math] | 1 | 1 | |||||
| [math]B_3(kB)[/math] | 9 | 7 | [math]D_8[/math] | 1 | 1 | 
Some open problems:
- Determine whether [math]B_6(k(2.M_{22}))[/math] is Morita equivalent to [math](C_3 \times C_3):Q_8[/math].
 - Determine whether [math]B_0(kA_8)[/math] is Morita equivalent to [math]B_3(k(HS.2))[/math].
 - Determine whether [math]B_3(kCo_1), B_6(kJ_4), B_2(kFi_{24}'), B_2(kB), B_3(kB), B_6(kB)[/math] are in Morita equivalence classes not listed in the table.