Difference between revisions of "M(8,4,2)"

From Block library
Jump to: navigation, search
(Basic algebra)
(Pic_O)
 
Line 28: Line 28:
 
\end{array}\right)</math>
 
\end{array}\right)</math>
 
|O-morita-frob = 1
 
|O-morita-frob = 1
|Pic-O =
+
|Pic-O = <math>C_2</math><ref>[[References|[Mar]]]</ref>
 
|source? = No
 
|source? = No
 
|sourcereps =  
 
|sourcereps =  
Line 90: Line 90:
  
 
[[Q8|Back to <math>Q_8</math>]]
 
[[Q8|Back to <math>Q_8</math>]]
 +
 +
== Notes ==
 +
 +
<references />
  
 
[[Category: Morita equivalence classes|8,4,2]]
 
[[Category: Morita equivalence classes|8,4,2]]
 
[[Category: Blocks with defect group Q8]]
 
[[Category: Blocks with defect group Q8]]
 
[[Category: Tame blocks|8,4,2]]
 
[[Category: Tame blocks|8,4,2]]

Latest revision as of 08:40, 24 May 2022

M(8,4,2) - [math]B_0(kSL_2(5))[/math]
M(4,2,2)quiver.png
Representative: [math]B_0(kSL_2(5))[/math]
Defect groups: [math]Q_8[/math]
Inertial quotients: [math]C_3[/math]
[math]k(B)=[/math] 7
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{ccc} 4 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 4 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}SL_2(5))[/math]
Decomposition matrices: [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]C_2[/math][1]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,4,3)
[math]\mathcal{O}[/math]-derived equiv. classes known? No
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

These are tame blocks, and appear in the family [math]D(3 {\cal A})_2[/math] in Erdmann's classification (see [Er88a], [Er88b]). The class lifts to a unique [math]\mathcal{O}[/math]-Morita equivalence class by [Ei16]. A derived equivalence with M(8,4,3) over [math]k[/math] was established in [Ho97].


Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>

Relations w.r.t. [math]k[/math]: ada=abcdabc, dad=bcdabcd, cbc=cdabcda, bcb=dabcdab, adab=cbcd=0

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{ccc} & 1 & \\ & 2 & \\ \begin{array}{c} 1 \\ \end{array} & \oplus & \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ \end{array} \\ & 2 & \\ & 1 & \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \ 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \\ \end{array}, & \begin{array}{ccc} & 3 & \\ & 2 & \\ \begin{array}{c} 3 \\ \end{array} & \oplus & \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ \end{array} \\ & 2 & \\ & 3 & \\ \end{array} \end{array} [/math]

Irreducible characters

[math]k_0(B)=4, k_1(B)=3[/math]

Back to [math]Q_8[/math]

Notes