Difference between revisions of "M(8,4,1)"
(Created page with "{{blockbox |title = M(8,4,1) - <math>kQ_8</math> |image = M(4,2,1)quiver.png |representative = <math>kQ_8</math> |defect = <math>Q_8</math> |inertialquotients = <math...") |
(Pic_O) |
||
Line 24: | Line 24: | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = | + | |Pic-O = <math>S_4</math> |
|source? = No | |source? = No | ||
|sourcereps = | |sourcereps = |
Latest revision as of 08:36, 24 May 2022
M(8,4,1) - [math]kQ_8[/math]
Representative: | [math]kQ_8[/math] |
---|---|
Defect groups: | [math]Q_8[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 8 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}Q_8[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]S_4[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>
Relations w.r.t. [math]k[/math]: [math]a^2=bab[/math], [math]b^2=aba[/math], [math](ab)^2=(ba)^2[/math], [math]ababa=0[/math]
Other notatable representatives
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} 1 \\ 1 \ 1 \\ 1 \ 1 \\ 1 \ 1 \\ 1 \\ \end{array} [/math]
Irreducible characters
[math]k_0(B)=4, k_1(B)=1[/math]