Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Removed separate defect zero section)
(Blocks for p=2)
Line 88: Line 88:
 
! scope="col"| SmallGroup  
 
! scope="col"| SmallGroup  
 
! scope="col"| Isotype
 
! scope="col"| Isotype
 +
! scope="col"| Donovan (w.r.t)?
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Complete (w.r.t.)?
Line 94: Line 95:
 
! scope="col"| Notes
 
! scope="col"| Notes
 
|-  
 
|-  
|32 || [[C32|1]] || [[C32|<math>C_{32}</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
+
|32 || [[C32|1]] || [[C32|<math>C_{32}</math>]] || <math>\mathcal{O}</math> ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|-
 
|-
|32 || [[MNA(2,2)|2]] || [[MNA(2,2)|<math>MNA(2,2)</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKS12]]] ||
+
|32 || [[MNA(2,2)|2]] || [[MNA(2,2)|<math>MNA(2,2)</math>]] || <math>\mathcal{O}</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKS12]]] ||
 
|-
 
|-
|32 || [[C8xC4|3]] || [[C8xC4|<math>C_8 \times C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
+
|32 || [[C8xC4|3]] || [[C8xC4|<math>C_8 \times C_4</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
 
|-
 
|-
|32 || [[C8:C4|4]] || [[C8:C4|<math>C_8:C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[C8:C4|4]] || [[C8:C4|<math>C_8:C_4</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[MNA(3,1)|5]] || [[MNA(3,1)|<math>MNA(3,1)</math>]] || || || || [[References|[Sa11] ]] || Invariants known
+
|32 || [[MNA(3,1)|5]] || [[MNA(3,1)|<math>MNA(3,1)</math>]] || No || || || || [[References|[Sa11] ]] || Invariants known
 
|-
 
|-
|32 || [[MNA(2,1):C2|6]] || [[MNA(3,1):C2|<math>MNA(2,1):C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[MNA(2,1):C2|6]] || [[MNA(3,1):C2|<math>MNA(2,1):C_2</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[M16:C2|7]] || [[M16:C2|<math>M_{16}:C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[M16:C2|7]] || [[M16:C2|<math>M_{16}:C_2</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[2.MNA(2,1)|8]] || [[2.MNA(2,1)|<math>2.MNA(2,1)</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[2.MNA(2,1)|8]] || [[2.MNA(2,1)|<math>2.MNA(2,1)</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8:C4|9]] || [[D8:C4|<math>D_8:C_4</math>]] || || || || [[References|[Sa14,10.23]]] || Invariants known
+
|32 || [[D8:C4|9]] || [[D8:C4|<math>D_8:C_4</math>]] || No || || || || [[References|[Sa14,10.23]]] || Invariants known
 
|-
 
|-
|32 || [[Q8:C4|10]] || [[Q8:C4|<math>Q_8:C_4</math>]] || || || || [[References|[Sa14,10.25]]] || Invariants known
+
|32 || [[Q8:C4|10]] || [[Q8:C4|<math>Q_8:C_4</math>]] || No || || || || [[References|[Sa14,10.25]]] || Invariants known
 
|-
 
|-
|32 || [[C4wrC2|11]] || [[C4wrC2|<math>C_4 \wr C_2</math>]] || || || || [[References|[Ku80]]] || Invariants known
+
|32 || [[C4wrC2|11]] || [[C4wrC2|<math>C_4 \wr C_2</math>]] || No || || || || [[References|[Ku80]]] || Invariants known
 
|-
 
|-
|32 || [[C4:C8|12]] || [[C4:C8|<math>C_4:C_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[C4:C8|12]] || [[C4:C8|<math>C_4:C_8</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[C8:C4a|13]] || [[C8:C4a|<math>C_8:C_4=\langle a,b|a^8=b^4=1, ba=a^3b \rangle</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[C8:C4a|13]] || [[C8:C4a|<math>C_8:C_4=\langle a,b|a^8=b^4=1, ba=a^3b \rangle</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[C8:C4b|14]] || [[C8:C4b|<math>C_8:C_4=\langle a,b|a^8=b^4=1, ba=a^7b \rangle</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[C8:C4b|14]] || [[C8:C4b|<math>C_8:C_4=\langle a,b|a^8=b^4=1, ba=a^7b \rangle</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,15)|15]] || [[SmallGroup(32,15)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[SmallGroup(32,15)|15]] || [[SmallGroup(32,15)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[C16xC2|16]] || [[C16xC2|<math>C_{16} \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
+
|32 || [[C16xC2|16]] || [[C16xC2|<math>C_{16} \times C_2</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|-
 
|-
|32 || [[M32|17]] || [[M32|<math>M_{32}</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|32 || [[M32|17]] || [[M32|<math>M_{32}</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|32 || [[D32|18]] || [[D32|<math>D_{32}</math>]] || 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] ||
+
|32 || [[D32|18]] || [[D32|<math>D_{32}</math>]] || <math>k</math> || 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] ||
 
|-
 
|-
|32 || [[SD32|19]] || [[SD32|<math>SD_{32}</math>]] || || || || ||
+
|32 || [[SD32|19]] || [[SD32|<math>SD_{32}</math>]] || <math>k</math> || || || || ||
 
|-
 
|-
|32 || [[Q32|20]] || [[Q32|<math>Q_{32}</math>]] || || || || [[References#E|[Er88a], [Er88b], [Ho97]]] || Two possibly infinite families when <math>l(B)=2</math>. Classified over <math>\mathcal{O}</math> when <math>l(B)=3</math> in [[References#E|[Ei16]]]
+
|32 || [[Q32|20]] || [[Q32|<math>Q_{32}</math>]] || No || || || || [[References#E|[Er88a], [Er88b], [Ho97]]] || Two possibly infinite families when <math>l(B)=2</math>. Classified over <math>\mathcal{O}</math> when <math>l(B)=3</math> in [[References#E|[Ei16]]]
 
|-
 
|-
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  
+
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || <math>\mathcal{O}</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  
 
|-
 
|-
|32 || [[MNA(2,1)xC2|22]] || [[MNA(2,1)xC2|<math>MNA(2,1) \times C_2</math>]] || || || || [[References|[Sa14,10.25]]] || Invariants known
+
|32 || [[MNA(2,1)xC2|22]] || [[MNA(2,1)xC2|<math>MNA(2,1) \times C_2</math>]] || No || || || || [[References|[Sa14,10.25]]] || Invariants known
 
|-
 
|-
|32 || [[(C4:C4)xC2|23]] || [[(C4:C4)xC2|<math>(C_4:C_4) \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[(C4:C4)xC2|23]] || [[(C4:C4)xC2|<math>(C_4:C_4) \times C_2</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,24)|24]] || [[SmallGroup(32,24)]]<!--<math>(C_4 \times C_4):C_2=\langle a,b,c \mid a^4 = b^4 = c^2 = e, ab = ba, ac = ca, cb = a^2bc \rangle</math>]]--> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[SmallGroup(32,24)|24]] || [[SmallGroup(32,24)]]<!--<math>(C_4 \times C_4):C_2=\langle a,b,c \mid a^4 = b^4 = c^2 = e, ab = ba, ac = ca, cb = a^2bc \rangle</math>]]--> || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8xC4|25]] || [[D8xC4|<math>D_8 \times C_4</math>]] || || || || [[References|[Sa14,9.7]]] ||
+
|32 || [[D8xC4|25]] || [[D8xC4|<math>D_8 \times C_4</math>]] || No || || || || [[References|[Sa14,9.7]]] ||
 
Invariants known
 
Invariants known
 
|-
 
|-
|32 || [[Q8xC4|26]] || [[Q8xC4|<math>Q_8 \times C_4</math>]] || || || || [[References|[Sa14,9.28]]] || Invariants known
+
|32 || [[Q8xC4|26]] || [[Q8xC4|<math>Q_8 \times C_4</math>]] || No || || || || [[References|[Sa14,9.28]]] || Invariants known
 
|-
 
|-
|32 || [[SmallGroup(32,27)|27]] || [[SmallGroup(32,27)]]<!--|<math>(C_4 \times C_4):C_2=\langle x,y,z,a,b \mid x^2 = y^2 = z^2 = a^2 = b^2 = e, xy = yx, xz, = zx, yz = zy, aza^{-1} = xz, bzb^{-1} = yz, ax = xa, ay = ya, bx = xb, by = yb \rangle</math>]]--> || || || || ||
+
|32 || [[SmallGroup(32,27)|27]] || [[SmallGroup(32,27)]]<!--|<math>(C_4 \times C_4):C_2=\langle x,y,z,a,b \mid x^2 = y^2 = z^2 = a^2 = b^2 = e, xy = yx, xz, = zx, yz = zy, aza^{-1} = xz, bzb^{-1} = yz, ax = xa, ay = ya, bx = xb, by = yb \rangle</math>]]--> || No || || || || ||
 
|-
 
|-
|32 || [[SmallGroup(32,28)|28]] || [[SmallGroup(32,28)]] || || || || [[References|[Sa14,13.11]]] || Invariants known
+
|32 || [[SmallGroup(32,28)|28]] || [[SmallGroup(32,28)]] || No || || || || [[References|[Sa14,13.11]]] || Invariants known
 
|-
 
|-
|32 || [[SmallGroup(32,29)|29]] || [[SmallGroup(32,29)]] || || || || [[References|[Sa14,13.11]]] || Invariants known
+
|32 || [[SmallGroup(32,29)|29]] || [[SmallGroup(32,29)]] || No || || || || [[References|[Sa14,13.11]]] || Invariants known
 
|-
 
|-
|32 || [[SmallGroup(32,30)|30]] || [[SmallGroup(32,30)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[SmallGroup(32,30)|30]] || [[SmallGroup(32,30)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,31)|31]] || [[SmallGroup(32,31)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[SmallGroup(32,31)|31]] || [[SmallGroup(32,31)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,32)|32]] || [[SmallGroup(32,32)]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[SmallGroup(32,32)|32]] || [[SmallGroup(32,32)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[SmallGroup(32,33)|33]] || [[SmallGroup(32,33)]] || || || || [[References|[Sa14,13.12]]] || Invariants partly known
+
|32 || [[SmallGroup(32,33)|33]] || [[SmallGroup(32,33)]] || No || || || || [[References|[Sa14,13.12]]] || Invariants partly known
 
|-
 
|-
|32 || [[SmallGroup(32,34)|34]] || [[SmallGroup(32,34)]] || || || || [[References|[Sa14,13.12]]] || Invariants partly known
+
|32 || [[SmallGroup(32,34)|34]] || [[SmallGroup(32,34)]] || No || || || || [[References|[Sa14,13.12]]] || Invariants partly known
 
|-
 
|-
|32 || [[C4:Q8|35]] || [[C4:Q8|<math>C_4:Q_8</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[C4:Q8|35]] || [[C4:Q8|<math>C_4:Q_8</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[C8xC2xC2|36]] || [[C8xC2xC2|<math>C_8 \times C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EL18a]]] ||
+
|32 || [[C8xC2xC2|36]] || [[C8xC2xC2|<math>C_8 \times C_2 \times C_2</math>]] || <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EL18a]]] ||
 
|-
 
|-
|32 || [[M16xC2|37]] || [[M16xC2|<math>M_{16} \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
+
|32 || [[M16xC2|37]] || [[M16xC2|<math>M_{16} \times C_2</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Sa14]]] ||
 
|-
 
|-
|32 || [[D8*C8|38]] || [[D8*C8|<math>D_8*C_8</math>]] || || || || [[References|[Sa14,9.18]]] || Invariants known
+
|32 || [[D8*C8|38]] || [[D8*C8|<math>D_8*C_8</math>]] || No || || || || [[References|[Sa14,9.18]]] || Invariants known
 
|-
 
|-
|32 || [[D16xC2|39]] || [[D16xC2|<math>D_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.7]]] || Invariants known
+
|32 || [[D16xC2|39]] || [[D16xC2|<math>D_{16} \times C_2</math>]] || No || || || || [[References|[Sa14,9.7]]] || Invariants known
 
|-
 
|-
|32 || [[SD16xC2|40]] || [[SD16xC2|<math>SD_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.37]]] || Invariants known
+
|32 || [[SD16xC2|40]] || [[SD16xC2|<math>SD_{16} \times C_2</math>]] || No || || || || [[References|[Sa14,9.37]]] || Invariants known
 
|-
 
|-
|32 || [[Q16xC2|41]] || [[Q16xC2|<math>Q_{16} \times C_2</math>]] || || || || [[References|[Sa14,9.28]]] || Invariants known
+
|32 || [[Q16xC2|41]] || [[Q16xC2|<math>Q_{16} \times C_2</math>]] || No || || || || [[References|[Sa14,9.28]]] || Invariants known
 
|-
 
|-
|32 || [[D16*C4|42]] || [[D16*C4|<math>D_{16}*C_4</math>]] || || || || [[References|[Sa14,9.18]]] || Invariants known
+
|32 || [[D16*C4|42]] || [[D16*C4|<math>D_{16}*C_4</math>]] || No || || || || [[References|[Sa14,9.18]]] || Invariants known
 
|-
 
|-
|32 || [[SmallGroup(32,43)|43]] || [[SmallGroup(32,43)]] || || || || ||
+
|32 || [[SmallGroup(32,43)|43]] || [[SmallGroup(32,43)]] || No || || || || ||
 
|-
 
|-
|32 || [[SmallGroup(32,44)|44]] || [[SmallGroup(32,44)]] || || || || ||
+
|32 || [[SmallGroup(32,44)|44]] || [[SmallGroup(32,44)]] || No || || || || ||
 
|-
 
|-
|32 || [[C4xC2xC2xC2|45]] || [[C4xC2xC2xC2|<math>C_4 \times C_2 \times C_2 \times C_2</math>]] || || || || [[References|[Sa14, 13.9]]] || Invariants known
+
|32 || [[C4xC2xC2xC2|45]] || [[C4xC2xC2xC2|<math>C_4 \times C_2 \times C_2 \times C_2</math>]] || No || || || || [[References|[Sa14, 13.9]]] || Invariants known
 
|-
 
|-
|32 || [[D8xC2xC2|46]] || [[D8xC2xC2|<math>D_8 \times C_2 \times C_2</math>]] || || || || ||
+
|32 || [[D8xC2xC2|46]] || [[D8xC2xC2|<math>D_8 \times C_2 \times C_2</math>]] || No || || || || ||
 
|-
 
|-
|32 || [[Q8xC2xC2|47]] || [[Q8xC2xC2|<math>Q_8 \times C_2 \times C_2</math>]] || || || || ||
+
|32 || [[Q8xC2xC2|47]] || [[Q8xC2xC2|<math>Q_8 \times C_2 \times C_2</math>]] || No || || || || ||
 
|-
 
|-
|32 || [[D8*C4xC2|48]] || [[D8*C4xC2|<math>(D_8*C_4) \times C_2</math>]] || || || || ||
+
|32 || [[D8*C4xC2|48]] || [[D8*C4xC2|<math>(D_8*C_4) \times C_2</math>]] || No || || || || ||
 
|-
 
|-
|32 || [[D8*D8|49]] || [[D8*D8|<math>D_8*D_8</math>]] || || || || [[References|[Sa13c]]] || Invariants partly known
+
|32 || [[D8*D8|49]] || [[D8*D8|<math>D_8*D_8</math>]] || No || || || || [[References|[Sa13c]]] || Invariants partly known
 
|-
 
|-
|32 || [[D8*Q8|50]] || [[D8*Q8|<math>D_8*Q_8</math>]] || || || || [[References|[Sa13c]]] || Invariants partly known
+
|32 || [[D8*Q8|50]] || [[D8*Q8|<math>D_8*Q_8</math>]] || No || || || || [[References|[Sa13c]]] || Invariants partly known
 
|-
 
|-
|32 || [[(C2)^5|51]] || [[(C2)^5|<math>(C_2)^5</math>]] || || || || ||
+
|32 || [[(C2)^5|51]] || [[(C2)^5|<math>(C_2)^5</math>]] || <math>\mathcal{O}</math> || || || || ||
 
|}
 
|}
  

Revision as of 16:21, 28 March 2019

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks for [math] p=2 [/math]

The following takes as its starting point Table 13.1 of Sambale's book [Sa14].

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]