Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2)
(Blocks for p=2)
Line 147: Line 147:
 
|32 || [[SD32|19]] || [[SD32|<math>SD_{32}</math>]] || || || || ||
 
|32 || [[SD32|19]] || [[SD32|<math>SD_{32}</math>]] || || || || ||
 
|-
 
|-
|32 || [[Q32|20]] || [[Q32|<math>Q_{32}</math>]] || || || || ||
+
|32 || [[Q32|20]] || [[Q32|<math>Q_{32}</math>]] || || || || [[References#E|[Er88a], [Er88b], [Ho97]]] || Two possibly infinite families when <math>l(B)=2</math>. Classified over <math>\mathcal{O}</math> when <math>l(B)=3</math> in [[References#E|[Ei16]]]
 
|-
 
|-
 
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  
 
|32 || [[C4xC4xC2|21]] || [[C4xC4xC2|<math>C_4 \times C_4 \times C_2</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14]]]  

Revision as of 16:19, 28 January 2019

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks of defect zero

Blocks for [math] p=2 [/math]

The following takes as its starting point Table 13.1 of Sambale's book [Sa14].

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]